ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql2 Unicode version

Theorem fneqeql2 5671
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
A  C_  dom  ( F  i^i  G ) ) )

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 5670 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  dom  ( F  i^i  G
)  =  A ) )
2 eqss 3198 . . 3  |-  ( dom  ( F  i^i  G
)  =  A  <->  ( dom  ( F  i^i  G ) 
C_  A  /\  A  C_ 
dom  ( F  i^i  G ) ) )
3 inss1 3383 . . . . . 6  |-  ( F  i^i  G )  C_  F
4 dmss 4865 . . . . . 6  |-  ( ( F  i^i  G ) 
C_  F  ->  dom  ( F  i^i  G ) 
C_  dom  F )
53, 4ax-mp 5 . . . . 5  |-  dom  ( F  i^i  G )  C_  dom  F
6 fndm 5357 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
76adantr 276 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  F  =  A )
85, 7sseqtrid 3233 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  C_  A )
98biantrurd 305 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  C_  dom  ( F  i^i  G )  <-> 
( dom  ( F  i^i  G )  C_  A  /\  A  C_  dom  ( F  i^i  G ) ) ) )
102, 9bitr4id 199 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F  i^i  G )  =  A  <->  A  C_  dom  ( F  i^i  G ) ) )
111, 10bitrd 188 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
A  C_  dom  ( F  i^i  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    i^i cin 3156    C_ wss 3157   dom cdm 4663    Fn wfn 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator