ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql2 Unicode version

Theorem fneqeql2 5573
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
A  C_  dom  ( F  i^i  G ) ) )

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 5572 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  dom  ( F  i^i  G
)  =  A ) )
2 eqss 3143 . . 3  |-  ( dom  ( F  i^i  G
)  =  A  <->  ( dom  ( F  i^i  G ) 
C_  A  /\  A  C_ 
dom  ( F  i^i  G ) ) )
3 inss1 3327 . . . . . 6  |-  ( F  i^i  G )  C_  F
4 dmss 4782 . . . . . 6  |-  ( ( F  i^i  G ) 
C_  F  ->  dom  ( F  i^i  G ) 
C_  dom  F )
53, 4ax-mp 5 . . . . 5  |-  dom  ( F  i^i  G )  C_  dom  F
6 fndm 5266 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
76adantr 274 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  F  =  A )
85, 7sseqtrid 3178 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  C_  A )
98biantrurd 303 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  C_  dom  ( F  i^i  G )  <-> 
( dom  ( F  i^i  G )  C_  A  /\  A  C_  dom  ( F  i^i  G ) ) ) )
102, 9bitr4id 198 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F  i^i  G )  =  A  <->  A  C_  dom  ( F  i^i  G ) ) )
111, 10bitrd 187 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
A  C_  dom  ( F  i^i  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    i^i cin 3101    C_ wss 3102   dom cdm 4583    Fn wfn 5162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fn 5170  df-fv 5175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator