ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql GIF version

Theorem fneqeql 5626
Description: Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fneqeql ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))

Proof of Theorem fneqeql
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5615 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
2 eqcom 2179 . . . 4 ({𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = 𝐴𝐴 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
3 rabid2 2654 . . . 4 (𝐴 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
42, 3bitri 184 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = 𝐴 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
51, 4bitr4di 198 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = 𝐴))
6 fndmin 5625 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
76eqeq1d 2186 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = 𝐴 ↔ {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = 𝐴))
85, 7bitr4d 191 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wral 2455  {crab 2459  cin 3130  dom cdm 4628   Fn wfn 5213  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  fneqeql2  5627  fnreseql  5628
  Copyright terms: Public domain W3C validator