![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fneqeql | GIF version |
Description: Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
fneqeql | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹 ∩ 𝐺) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv 5615 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
2 | eqcom 2179 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} = 𝐴 ↔ 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) | |
3 | rabid2 2654 | . . . 4 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) | |
4 | 2, 3 | bitri 184 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} = 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
5 | 1, 4 | bitr4di 198 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} = 𝐴)) |
6 | fndmin 5625 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) | |
7 | 6 | eqeq1d 2186 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} = 𝐴)) |
8 | 5, 7 | bitr4d 191 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹 ∩ 𝐺) = 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∀wral 2455 {crab 2459 ∩ cin 3130 dom cdm 4628 Fn wfn 5213 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 |
This theorem is referenced by: fneqeql2 5627 fnreseql 5628 |
Copyright terms: Public domain | W3C validator |