ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql GIF version

Theorem fneqeql 5641
Description: Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fneqeql ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))

Proof of Theorem fneqeql
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5630 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
2 eqcom 2191 . . . 4 ({𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = 𝐴𝐴 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
3 rabid2 2667 . . . 4 (𝐴 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
42, 3bitri 184 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = 𝐴 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
51, 4bitr4di 198 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = 𝐴))
6 fndmin 5640 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
76eqeq1d 2198 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = 𝐴 ↔ {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = 𝐴))
85, 7bitr4d 191 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wral 2468  {crab 2472  cin 3143  dom cdm 4641   Fn wfn 5227  cfv 5232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5234  df-fn 5235  df-fv 5240
This theorem is referenced by:  fneqeql2  5642  fnreseql  5643
  Copyright terms: Public domain W3C validator