ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfco GIF version

Theorem fnfco 5496
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnfco ((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnfco
StepHypRef Expression
1 df-f 5318 . 2 (𝐺:𝐵𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐴))
2 fnco 5427 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
323expb 1228 . 2 ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐴)) → (𝐹𝐺) Fn 𝐵)
41, 3sylan2b 287 1 ((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3197  ran crn 4717  ccom 4720   Fn wfn 5309  wf 5310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-fun 5316  df-fn 5317  df-f 5318
This theorem is referenced by:  cocan1  5904  cocan2  5905  ofco  6227  1stcof  6299  2ndcof  6300  cc3  7442
  Copyright terms: Public domain W3C validator