Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cocan2 | Unicode version |
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cocan2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5420 | . . . . . . 7 | |
2 | 1 | 3ad2ant1 1013 | . . . . . 6 |
3 | fvco3 5567 | . . . . . 6 | |
4 | 2, 3 | sylan 281 | . . . . 5 |
5 | fvco3 5567 | . . . . . 6 | |
6 | 2, 5 | sylan 281 | . . . . 5 |
7 | 4, 6 | eqeq12d 2185 | . . . 4 |
8 | 7 | ralbidva 2466 | . . 3 |
9 | fveq2 5496 | . . . . . 6 | |
10 | fveq2 5496 | . . . . . 6 | |
11 | 9, 10 | eqeq12d 2185 | . . . . 5 |
12 | 11 | cbvfo 5764 | . . . 4 |
13 | 12 | 3ad2ant1 1013 | . . 3 |
14 | 8, 13 | bitrd 187 | . 2 |
15 | simp2 993 | . . . 4 | |
16 | fnfco 5372 | . . . 4 | |
17 | 15, 2, 16 | syl2anc 409 | . . 3 |
18 | simp3 994 | . . . 4 | |
19 | fnfco 5372 | . . . 4 | |
20 | 18, 2, 19 | syl2anc 409 | . . 3 |
21 | eqfnfv 5593 | . . 3 | |
22 | 17, 20, 21 | syl2anc 409 | . 2 |
23 | eqfnfv 5593 | . . 3 | |
24 | 15, 18, 23 | syl2anc 409 | . 2 |
25 | 14, 22, 24 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 ccom 4615 wfn 5193 wf 5194 wfo 5196 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 |
This theorem is referenced by: mapen 6824 hashfacen 10771 |
Copyright terms: Public domain | W3C validator |