Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cocan2 | Unicode version |
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cocan2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5410 | . . . . . . 7 | |
2 | 1 | 3ad2ant1 1008 | . . . . . 6 |
3 | fvco3 5557 | . . . . . 6 | |
4 | 2, 3 | sylan 281 | . . . . 5 |
5 | fvco3 5557 | . . . . . 6 | |
6 | 2, 5 | sylan 281 | . . . . 5 |
7 | 4, 6 | eqeq12d 2180 | . . . 4 |
8 | 7 | ralbidva 2462 | . . 3 |
9 | fveq2 5486 | . . . . . 6 | |
10 | fveq2 5486 | . . . . . 6 | |
11 | 9, 10 | eqeq12d 2180 | . . . . 5 |
12 | 11 | cbvfo 5753 | . . . 4 |
13 | 12 | 3ad2ant1 1008 | . . 3 |
14 | 8, 13 | bitrd 187 | . 2 |
15 | simp2 988 | . . . 4 | |
16 | fnfco 5362 | . . . 4 | |
17 | 15, 2, 16 | syl2anc 409 | . . 3 |
18 | simp3 989 | . . . 4 | |
19 | fnfco 5362 | . . . 4 | |
20 | 18, 2, 19 | syl2anc 409 | . . 3 |
21 | eqfnfv 5583 | . . 3 | |
22 | 17, 20, 21 | syl2anc 409 | . 2 |
23 | eqfnfv 5583 | . . 3 | |
24 | 15, 18, 23 | syl2anc 409 | . 2 |
25 | 14, 22, 24 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 ccom 4608 wfn 5183 wf 5184 wfo 5186 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: mapen 6812 hashfacen 10749 |
Copyright terms: Public domain | W3C validator |