| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cocan2 | Unicode version | ||
| Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| cocan2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5520 |
. . . . . . 7
| |
| 2 | 1 | 3ad2ant1 1021 |
. . . . . 6
|
| 3 | fvco3 5673 |
. . . . . 6
| |
| 4 | 2, 3 | sylan 283 |
. . . . 5
|
| 5 | fvco3 5673 |
. . . . . 6
| |
| 6 | 2, 5 | sylan 283 |
. . . . 5
|
| 7 | 4, 6 | eqeq12d 2222 |
. . . 4
|
| 8 | 7 | ralbidva 2504 |
. . 3
|
| 9 | fveq2 5599 |
. . . . . 6
| |
| 10 | fveq2 5599 |
. . . . . 6
| |
| 11 | 9, 10 | eqeq12d 2222 |
. . . . 5
|
| 12 | 11 | cbvfo 5877 |
. . . 4
|
| 13 | 12 | 3ad2ant1 1021 |
. . 3
|
| 14 | 8, 13 | bitrd 188 |
. 2
|
| 15 | simp2 1001 |
. . . 4
| |
| 16 | fnfco 5472 |
. . . 4
| |
| 17 | 15, 2, 16 | syl2anc 411 |
. . 3
|
| 18 | simp3 1002 |
. . . 4
| |
| 19 | fnfco 5472 |
. . . 4
| |
| 20 | 18, 2, 19 | syl2anc 411 |
. . 3
|
| 21 | eqfnfv 5700 |
. . 3
| |
| 22 | 17, 20, 21 | syl2anc 411 |
. 2
|
| 23 | eqfnfv 5700 |
. . 3
| |
| 24 | 15, 18, 23 | syl2anc 411 |
. 2
|
| 25 | 14, 22, 24 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fo 5296 df-fv 5298 |
| This theorem is referenced by: mapen 6968 hashfacen 11018 |
| Copyright terms: Public domain | W3C validator |