| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cocan2 | Unicode version | ||
| Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| cocan2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5548 |
. . . . . . 7
| |
| 2 | 1 | 3ad2ant1 1042 |
. . . . . 6
|
| 3 | fvco3 5705 |
. . . . . 6
| |
| 4 | 2, 3 | sylan 283 |
. . . . 5
|
| 5 | fvco3 5705 |
. . . . . 6
| |
| 6 | 2, 5 | sylan 283 |
. . . . 5
|
| 7 | 4, 6 | eqeq12d 2244 |
. . . 4
|
| 8 | 7 | ralbidva 2526 |
. . 3
|
| 9 | fveq2 5627 |
. . . . . 6
| |
| 10 | fveq2 5627 |
. . . . . 6
| |
| 11 | 9, 10 | eqeq12d 2244 |
. . . . 5
|
| 12 | 11 | cbvfo 5909 |
. . . 4
|
| 13 | 12 | 3ad2ant1 1042 |
. . 3
|
| 14 | 8, 13 | bitrd 188 |
. 2
|
| 15 | simp2 1022 |
. . . 4
| |
| 16 | fnfco 5500 |
. . . 4
| |
| 17 | 15, 2, 16 | syl2anc 411 |
. . 3
|
| 18 | simp3 1023 |
. . . 4
| |
| 19 | fnfco 5500 |
. . . 4
| |
| 20 | 18, 2, 19 | syl2anc 411 |
. . 3
|
| 21 | eqfnfv 5732 |
. . 3
| |
| 22 | 17, 20, 21 | syl2anc 411 |
. 2
|
| 23 | eqfnfv 5732 |
. . 3
| |
| 24 | 15, 18, 23 | syl2anc 411 |
. 2
|
| 25 | 14, 22, 24 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 |
| This theorem is referenced by: mapen 7007 hashfacen 11058 |
| Copyright terms: Public domain | W3C validator |