Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cocan2 | Unicode version |
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cocan2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5430 | . . . . . . 7 | |
2 | 1 | 3ad2ant1 1018 | . . . . . 6 |
3 | fvco3 5579 | . . . . . 6 | |
4 | 2, 3 | sylan 283 | . . . . 5 |
5 | fvco3 5579 | . . . . . 6 | |
6 | 2, 5 | sylan 283 | . . . . 5 |
7 | 4, 6 | eqeq12d 2190 | . . . 4 |
8 | 7 | ralbidva 2471 | . . 3 |
9 | fveq2 5507 | . . . . . 6 | |
10 | fveq2 5507 | . . . . . 6 | |
11 | 9, 10 | eqeq12d 2190 | . . . . 5 |
12 | 11 | cbvfo 5776 | . . . 4 |
13 | 12 | 3ad2ant1 1018 | . . 3 |
14 | 8, 13 | bitrd 188 | . 2 |
15 | simp2 998 | . . . 4 | |
16 | fnfco 5382 | . . . 4 | |
17 | 15, 2, 16 | syl2anc 411 | . . 3 |
18 | simp3 999 | . . . 4 | |
19 | fnfco 5382 | . . . 4 | |
20 | 18, 2, 19 | syl2anc 411 | . . 3 |
21 | eqfnfv 5605 | . . 3 | |
22 | 17, 20, 21 | syl2anc 411 | . 2 |
23 | eqfnfv 5605 | . . 3 | |
24 | 15, 18, 23 | syl2anc 411 | . 2 |
25 | 14, 22, 24 | 3bitr4d 220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wral 2453 ccom 4624 wfn 5203 wf 5204 wfo 5206 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fo 5214 df-fv 5216 |
This theorem is referenced by: mapen 6836 hashfacen 10782 |
Copyright terms: Public domain | W3C validator |