ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocan2 Unicode version

Theorem cocan2 5835
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan2  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( ( H  o.  F )  =  ( K  o.  F )  <->  H  =  K ) )

Proof of Theorem cocan2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 5480 . . . . . . 7  |-  ( F : A -onto-> B  ->  F : A --> B )
213ad2ant1 1020 . . . . . 6  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  F : A
--> B )
3 fvco3 5632 . . . . . 6  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( H  o.  F ) `  y
)  =  ( H `
 ( F `  y ) ) )
42, 3sylan 283 . . . . 5  |-  ( ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  /\  y  e.  A )  ->  (
( H  o.  F
) `  y )  =  ( H `  ( F `  y ) ) )
5 fvco3 5632 . . . . . 6  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( K  o.  F ) `  y
)  =  ( K `
 ( F `  y ) ) )
62, 5sylan 283 . . . . 5  |-  ( ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  /\  y  e.  A )  ->  (
( K  o.  F
) `  y )  =  ( K `  ( F `  y ) ) )
74, 6eqeq12d 2211 . . . 4  |-  ( ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  /\  y  e.  A )  ->  (
( ( H  o.  F ) `  y
)  =  ( ( K  o.  F ) `
 y )  <->  ( H `  ( F `  y
) )  =  ( K `  ( F `
 y ) ) ) )
87ralbidva 2493 . . 3  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( A. y  e.  A  (
( H  o.  F
) `  y )  =  ( ( K  o.  F ) `  y )  <->  A. y  e.  A  ( H `  ( F `  y
) )  =  ( K `  ( F `
 y ) ) ) )
9 fveq2 5558 . . . . . 6  |-  ( ( F `  y )  =  x  ->  ( H `  ( F `  y ) )  =  ( H `  x
) )
10 fveq2 5558 . . . . . 6  |-  ( ( F `  y )  =  x  ->  ( K `  ( F `  y ) )  =  ( K `  x
) )
119, 10eqeq12d 2211 . . . . 5  |-  ( ( F `  y )  =  x  ->  (
( H `  ( F `  y )
)  =  ( K `
 ( F `  y ) )  <->  ( H `  x )  =  ( K `  x ) ) )
1211cbvfo 5832 . . . 4  |-  ( F : A -onto-> B  -> 
( A. y  e.  A  ( H `  ( F `  y ) )  =  ( K `
 ( F `  y ) )  <->  A. x  e.  B  ( H `  x )  =  ( K `  x ) ) )
13123ad2ant1 1020 . . 3  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( A. y  e.  A  ( H `  ( F `  y ) )  =  ( K `  ( F `  y )
)  <->  A. x  e.  B  ( H `  x )  =  ( K `  x ) ) )
148, 13bitrd 188 . 2  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( A. y  e.  A  (
( H  o.  F
) `  y )  =  ( ( K  o.  F ) `  y )  <->  A. x  e.  B  ( H `  x )  =  ( K `  x ) ) )
15 simp2 1000 . . . 4  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  H  Fn  B )
16 fnfco 5432 . . . 4  |-  ( ( H  Fn  B  /\  F : A --> B )  ->  ( H  o.  F )  Fn  A
)
1715, 2, 16syl2anc 411 . . 3  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( H  o.  F )  Fn  A
)
18 simp3 1001 . . . 4  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  K  Fn  B )
19 fnfco 5432 . . . 4  |-  ( ( K  Fn  B  /\  F : A --> B )  ->  ( K  o.  F )  Fn  A
)
2018, 2, 19syl2anc 411 . . 3  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( K  o.  F )  Fn  A
)
21 eqfnfv 5659 . . 3  |-  ( ( ( H  o.  F
)  Fn  A  /\  ( K  o.  F
)  Fn  A )  ->  ( ( H  o.  F )  =  ( K  o.  F
)  <->  A. y  e.  A  ( ( H  o.  F ) `  y
)  =  ( ( K  o.  F ) `
 y ) ) )
2217, 20, 21syl2anc 411 . 2  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( ( H  o.  F )  =  ( K  o.  F )  <->  A. y  e.  A  ( ( H  o.  F ) `  y )  =  ( ( K  o.  F
) `  y )
) )
23 eqfnfv 5659 . . 3  |-  ( ( H  Fn  B  /\  K  Fn  B )  ->  ( H  =  K  <->  A. x  e.  B  ( H `  x )  =  ( K `  x ) ) )
2415, 18, 23syl2anc 411 . 2  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( H  =  K  <->  A. x  e.  B  ( H `  x )  =  ( K `  x ) ) )
2514, 22, 243bitr4d 220 1  |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B
)  ->  ( ( H  o.  F )  =  ( K  o.  F )  <->  H  =  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    o. ccom 4667    Fn wfn 5253   -->wf 5254   -onto->wfo 5256   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by:  mapen  6907  hashfacen  10928
  Copyright terms: Public domain W3C validator