Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foelrni | Unicode version |
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.) |
Ref | Expression |
---|---|
foelrni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 5430 | . . . 4 | |
2 | 1 | eleq2d 2243 | . . 3 |
3 | fofn 5429 | . . . 4 | |
4 | fvelrnb 5552 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | 2, 5 | bitr3d 191 | . 2 |
7 | 6 | biimpa 296 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1351 wcel 2144 wrex 2452 crn 4618 wfn 5200 wfo 5203 cfv 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-14 2147 ax-ext 2155 ax-sep 4113 ax-pow 4166 ax-pr 4200 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ral 2456 df-rex 2457 df-v 2735 df-sbc 2959 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-fo 5211 df-fv 5213 |
This theorem is referenced by: mhmid 12835 mhmmnd 12836 ghmgrp 12838 |
Copyright terms: Public domain | W3C validator |