ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foelrni GIF version

Theorem foelrni 5560
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
Assertion
Ref Expression
foelrni ((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑌

Proof of Theorem foelrni
StepHypRef Expression
1 forn 5433 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
21eleq2d 2245 . . 3 (𝐹:𝐴onto𝐵 → (𝑌 ∈ ran 𝐹𝑌𝐵))
3 fofn 5432 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
4 fvelrnb 5555 . . . 4 (𝐹 Fn 𝐴 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
53, 4syl 14 . . 3 (𝐹:𝐴onto𝐵 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
62, 5bitr3d 190 . 2 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
76biimpa 296 1 ((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wrex 2454  ran crn 4621   Fn wfn 5203  ontowfo 5206  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fo 5214  df-fv 5216
This theorem is referenced by:  mhmid  12838  mhmmnd  12839  ghmgrp  12841
  Copyright terms: Public domain W3C validator