ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprg GIF version

Theorem fprg 5745
Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
Assertion
Ref Expression
fprg (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})

Proof of Theorem fprg
StepHypRef Expression
1 fnprg 5313 . 2 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
2 rnsnopg 5148 . . . . . . 7 (𝐴𝐸 → ran {⟨𝐴, 𝐶⟩} = {𝐶})
32adantr 276 . . . . . 6 ((𝐴𝐸𝐵𝐹) → ran {⟨𝐴, 𝐶⟩} = {𝐶})
433ad2ant1 1020 . . . . 5 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → ran {⟨𝐴, 𝐶⟩} = {𝐶})
5 rnsnopg 5148 . . . . . . 7 (𝐵𝐹 → ran {⟨𝐵, 𝐷⟩} = {𝐷})
65adantl 277 . . . . . 6 ((𝐴𝐸𝐵𝐹) → ran {⟨𝐵, 𝐷⟩} = {𝐷})
763ad2ant1 1020 . . . . 5 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → ran {⟨𝐵, 𝐷⟩} = {𝐷})
84, 7uneq12d 3318 . . . 4 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷}))
9 df-pr 3629 . . . . . 6 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
109rneqi 4894 . . . . 5 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
11 rnun 5078 . . . . 5 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
1210, 11eqtri 2217 . . . 4 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
13 df-pr 3629 . . . 4 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
148, 12, 133eqtr4g 2254 . . 3 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})
15 eqimss 3237 . . 3 (ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷} → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷})
1614, 15syl 14 . 2 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷})
17 df-f 5262 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}))
181, 16, 17sylanbrc 417 1 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wne 2367  cun 3155  wss 3157  {csn 3622  {cpr 3623  cop 3625  ran crn 4664   Fn wfn 5253  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262
This theorem is referenced by:  ftpg  5746
  Copyright terms: Public domain W3C validator