Step | Hyp | Ref
| Expression |
1 | | fnprg 5273 |
. 2
⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵}) |
2 | | rnsnopg 5109 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐸 → ran {⟨𝐴, 𝐶⟩} = {𝐶}) |
3 | 2 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) → ran {⟨𝐴, 𝐶⟩} = {𝐶}) |
4 | 3 | 3ad2ant1 1018 |
. . . . 5
⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → ran {⟨𝐴, 𝐶⟩} = {𝐶}) |
5 | | rnsnopg 5109 |
. . . . . . 7
⊢ (𝐵 ∈ 𝐹 → ran {⟨𝐵, 𝐷⟩} = {𝐷}) |
6 | 5 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) → ran {⟨𝐵, 𝐷⟩} = {𝐷}) |
7 | 6 | 3ad2ant1 1018 |
. . . . 5
⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → ran {⟨𝐵, 𝐷⟩} = {𝐷}) |
8 | 4, 7 | uneq12d 3292 |
. . . 4
⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷})) |
9 | | df-pr 3601 |
. . . . . 6
⊢
{⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) |
10 | 9 | rneqi 4857 |
. . . . 5
⊢ ran
{⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) |
11 | | rnun 5039 |
. . . . 5
⊢ ran
({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) |
12 | 10, 11 | eqtri 2198 |
. . . 4
⊢ ran
{⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) |
13 | | df-pr 3601 |
. . . 4
⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) |
14 | 8, 12, 13 | 3eqtr4g 2235 |
. . 3
⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷}) |
15 | | eqimss 3211 |
. . 3
⊢ (ran
{⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷} → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}) |
16 | 14, 15 | syl 14 |
. 2
⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}) |
17 | | df-f 5222 |
. 2
⊢
({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷})) |
18 | 1, 16, 17 | sylanbrc 417 |
1
⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |