ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprg GIF version

Theorem fprg 5603
Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
Assertion
Ref Expression
fprg (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})

Proof of Theorem fprg
StepHypRef Expression
1 fnprg 5178 . 2 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
2 rnsnopg 5017 . . . . . . 7 (𝐴𝐸 → ran {⟨𝐴, 𝐶⟩} = {𝐶})
32adantr 274 . . . . . 6 ((𝐴𝐸𝐵𝐹) → ran {⟨𝐴, 𝐶⟩} = {𝐶})
433ad2ant1 1002 . . . . 5 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → ran {⟨𝐴, 𝐶⟩} = {𝐶})
5 rnsnopg 5017 . . . . . . 7 (𝐵𝐹 → ran {⟨𝐵, 𝐷⟩} = {𝐷})
65adantl 275 . . . . . 6 ((𝐴𝐸𝐵𝐹) → ran {⟨𝐵, 𝐷⟩} = {𝐷})
763ad2ant1 1002 . . . . 5 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → ran {⟨𝐵, 𝐷⟩} = {𝐷})
84, 7uneq12d 3231 . . . 4 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷}))
9 df-pr 3534 . . . . . 6 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
109rneqi 4767 . . . . 5 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
11 rnun 4947 . . . . 5 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
1210, 11eqtri 2160 . . . 4 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
13 df-pr 3534 . . . 4 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
148, 12, 133eqtr4g 2197 . . 3 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})
15 eqimss 3151 . . 3 (ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷} → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷})
1614, 15syl 14 . 2 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷})
17 df-f 5127 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}))
181, 16, 17sylanbrc 413 1 (((𝐴𝐸𝐵𝐹) ∧ (𝐶𝐺𝐷𝐻) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wne 2308  cun 3069  wss 3071  {csn 3527  {cpr 3528  cop 3530  ran crn 4540   Fn wfn 5118  wf 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127
This theorem is referenced by:  ftpg  5604
  Copyright terms: Public domain W3C validator