![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funbrfv2b | GIF version |
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
funbrfv2b | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5232 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | releldm 4861 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
3 | 2 | ex 115 | . . . 4 ⊢ (Rel 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
4 | 1, 3 | syl 14 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
5 | 4 | pm4.71rd 394 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
6 | funbrfvb 5557 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | |
7 | 6 | pm5.32da 452 | . 2 ⊢ (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
8 | 5, 7 | bitr4d 191 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4002 dom cdm 4625 Rel wrel 4630 Fun wfun 5209 ‘cfv 5215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4003 df-opab 4064 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-iota 5177 df-fun 5217 df-fn 5218 df-fv 5223 |
This theorem is referenced by: brtpos2 6249 xpcomco 6823 |
Copyright terms: Public domain | W3C validator |