ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfv2b GIF version

Theorem funbrfv2b 5559
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
funbrfv2b (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))

Proof of Theorem funbrfv2b
StepHypRef Expression
1 funrel 5232 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 releldm 4861 . . . . 5 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
32ex 115 . . . 4 (Rel 𝐹 → (𝐴𝐹𝐵𝐴 ∈ dom 𝐹))
41, 3syl 14 . . 3 (Fun 𝐹 → (𝐴𝐹𝐵𝐴 ∈ dom 𝐹))
54pm4.71rd 394 . 2 (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹𝐴𝐹𝐵)))
6 funbrfvb 5557 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
76pm5.32da 452 . 2 (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹𝐴𝐹𝐵)))
85, 7bitr4d 191 1 (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148   class class class wbr 4002  dom cdm 4625  Rel wrel 4630  Fun wfun 5209  cfv 5215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223
This theorem is referenced by:  brtpos2  6249  xpcomco  6823
  Copyright terms: Public domain W3C validator