![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funbrfv2b | GIF version |
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
funbrfv2b | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5045 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | releldm 4683 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
3 | 2 | ex 114 | . . . 4 ⊢ (Rel 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
4 | 1, 3 | syl 14 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
5 | 4 | pm4.71rd 387 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
6 | funbrfvb 5360 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | |
7 | 6 | pm5.32da 441 | . 2 ⊢ (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
8 | 5, 7 | bitr4d 190 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1290 ∈ wcel 1439 class class class wbr 3851 dom cdm 4452 Rel wrel 4457 Fun wfun 5022 ‘cfv 5028 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-iota 4993 df-fun 5030 df-fn 5031 df-fv 5036 |
This theorem is referenced by: brtpos2 6030 xpcomco 6596 |
Copyright terms: Public domain | W3C validator |