ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundm2domnop Unicode version

Theorem fundm2domnop 11013
Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 12-Oct-2020.) (Proof shortened by AV, 9-Jun-2021.)
Assertion
Ref Expression
fundm2domnop  |-  ( ( Fun  G  /\  2o  ~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )

Proof of Theorem fundm2domnop
StepHypRef Expression
1 fundif 5327 . 2  |-  ( Fun 
G  ->  Fun  ( G 
\  { (/) } ) )
2 fundm2domnop0 11012 . 2  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
31, 2sylan 283 1  |-  ( ( Fun  G  /\  2o  ~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2177   _Vcvv 2773    \ cdif 3167   (/)c0 3464   {csn 3638   class class class wbr 4051    X. cxp 4681   dom cdm 4683   Fun wfun 5274   2oc2o 6509    ~<_ cdom 6839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fv 5288  df-1o 6515  df-2o 6516  df-dom 6842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator