ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundm2domnop GIF version

Theorem fundm2domnop 11063
Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 12-Oct-2020.) (Proof shortened by AV, 9-Jun-2021.)
Assertion
Ref Expression
fundm2domnop ((Fun 𝐺 ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fundm2domnop
StepHypRef Expression
1 fundif 5364 . 2 (Fun 𝐺 → Fun (𝐺 ∖ {∅}))
2 fundm2domnop0 11062 . 2 ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
31, 2sylan 283 1 ((Fun 𝐺 ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2200  Vcvv 2799  cdif 3194  c0 3491  {csn 3666   class class class wbr 4082   × cxp 4716  dom cdm 4718  Fun wfun 5311  2oc2o 6554  cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fv 5325  df-1o 6560  df-2o 6561  df-dom 6887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator