ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2dmnop0 Unicode version

Theorem fun2dmnop0 10990
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 10991 (with the less restrictive requirement that  ( G  \  { (/) } ) needs to be a function instead of  G) is useful for proofs for extensible structures, see structn0fun 12787. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.)
Hypotheses
Ref Expression
fun2dmnop.a  |-  A  e. 
_V
fun2dmnop.b  |-  B  e. 
_V
Assertion
Ref Expression
fun2dmnop0  |-  ( ( Fun  ( G  \  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_ 
dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )

Proof of Theorem fun2dmnop0
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . 3  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  Fun  ( G 
\  { (/) } ) )
2 dmexg 4941 . . . 4  |-  ( G  e.  ( _V  X.  _V )  ->  dom  G  e.  _V )
3 simpl3 1004 . . . . . 6  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  { A ,  B }  C_  dom  G )
4 fun2dmnop.a . . . . . . . 8  |-  A  e. 
_V
54prid1 3738 . . . . . . 7  |-  A  e. 
{ A ,  B }
65a1i 9 . . . . . 6  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  A  e.  { A ,  B }
)
73, 6sseldd 3193 . . . . 5  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  A  e.  dom  G )
8 fun2dmnop.b . . . . . . . 8  |-  B  e. 
_V
98prid2 3739 . . . . . . 7  |-  B  e. 
{ A ,  B }
109a1i 9 . . . . . 6  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  B  e.  { A ,  B }
)
113, 10sseldd 3193 . . . . 5  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  B  e.  dom  G )
12 simpl2 1003 . . . . 5  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  A  =/=  B )
13 neeq1 2388 . . . . . 6  |-  ( a  =  A  ->  (
a  =/=  b  <->  A  =/=  b ) )
14 neeq2 2389 . . . . . 6  |-  ( b  =  B  ->  ( A  =/=  b  <->  A  =/=  B ) )
1513, 14rspc2ev 2891 . . . . 5  |-  ( ( A  e.  dom  G  /\  B  e.  dom  G  /\  A  =/=  B
)  ->  E. a  e.  dom  G E. b  e.  dom  G  a  =/=  b )
167, 11, 12, 15syl3anc 1249 . . . 4  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  E. a  e.  dom  G E. b  e.  dom  G  a  =/=  b )
17 rex2dom 6909 . . . 4  |-  ( ( dom  G  e.  _V  /\ 
E. a  e.  dom  G E. b  e.  dom  G  a  =/=  b )  ->  2o  ~<_  dom  G
)
182, 16, 17syl2an2 594 . . 3  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  2o  ~<_  dom  G
)
19 fundm2domnop0 10988 . . 3  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
201, 18, 19syl2anc 411 . 2  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  -.  G  e.  ( _V  X.  _V ) )
2120pm2.01da 637 1  |-  ( ( Fun  ( G  \  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_ 
dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2175    =/= wne 2375   E.wrex 2484   _Vcvv 2771    \ cdif 3162    C_ wss 3165   (/)c0 3459   {csn 3632   {cpr 3633   class class class wbr 4043    X. cxp 4672   dom cdm 4674   Fun wfun 5264   2oc2o 6495    ~<_ cdom 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1o 6501  df-2o 6502  df-en 6827  df-dom 6828
This theorem is referenced by:  fun2dmnop  10991  funvtxdm2vald  15570  funiedgdm2vald  15571
  Copyright terms: Public domain W3C validator