ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2dmnop0 Unicode version

Theorem fun2dmnop0 11064
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 11065 (with the less restrictive requirement that  ( G  \  { (/) } ) needs to be a function instead of  G) is useful for proofs for extensible structures, see structn0fun 13040. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.)
Hypotheses
Ref Expression
fun2dmnop.a  |-  A  e. 
_V
fun2dmnop.b  |-  B  e. 
_V
Assertion
Ref Expression
fun2dmnop0  |-  ( ( Fun  ( G  \  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_ 
dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )

Proof of Theorem fun2dmnop0
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1024 . . 3  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  Fun  ( G 
\  { (/) } ) )
2 dmexg 4987 . . . 4  |-  ( G  e.  ( _V  X.  _V )  ->  dom  G  e.  _V )
3 simpl3 1026 . . . . . 6  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  { A ,  B }  C_  dom  G )
4 fun2dmnop.a . . . . . . . 8  |-  A  e. 
_V
54prid1 3772 . . . . . . 7  |-  A  e. 
{ A ,  B }
65a1i 9 . . . . . 6  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  A  e.  { A ,  B }
)
73, 6sseldd 3225 . . . . 5  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  A  e.  dom  G )
8 fun2dmnop.b . . . . . . . 8  |-  B  e. 
_V
98prid2 3773 . . . . . . 7  |-  B  e. 
{ A ,  B }
109a1i 9 . . . . . 6  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  B  e.  { A ,  B }
)
113, 10sseldd 3225 . . . . 5  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  B  e.  dom  G )
12 simpl2 1025 . . . . 5  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  A  =/=  B )
13 neeq1 2413 . . . . . 6  |-  ( a  =  A  ->  (
a  =/=  b  <->  A  =/=  b ) )
14 neeq2 2414 . . . . . 6  |-  ( b  =  B  ->  ( A  =/=  b  <->  A  =/=  B ) )
1513, 14rspc2ev 2922 . . . . 5  |-  ( ( A  e.  dom  G  /\  B  e.  dom  G  /\  A  =/=  B
)  ->  E. a  e.  dom  G E. b  e.  dom  G  a  =/=  b )
167, 11, 12, 15syl3anc 1271 . . . 4  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  E. a  e.  dom  G E. b  e.  dom  G  a  =/=  b )
17 rex2dom 6969 . . . 4  |-  ( ( dom  G  e.  _V  /\ 
E. a  e.  dom  G E. b  e.  dom  G  a  =/=  b )  ->  2o  ~<_  dom  G
)
182, 16, 17syl2an2 596 . . 3  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  2o  ~<_  dom  G
)
19 fundm2domnop0 11062 . . 3  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
201, 18, 19syl2anc 411 . 2  |-  ( ( ( Fun  ( G 
\  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_  dom  G )  /\  G  e.  ( _V  X.  _V )
)  ->  -.  G  e.  ( _V  X.  _V ) )
2120pm2.01da 639 1  |-  ( ( Fun  ( G  \  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_ 
dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    e. wcel 2200    =/= wne 2400   E.wrex 2509   _Vcvv 2799    \ cdif 3194    C_ wss 3197   (/)c0 3491   {csn 3666   {cpr 3667   class class class wbr 4082    X. cxp 4716   dom cdm 4718   Fun wfun 5311   2oc2o 6554    ~<_ cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-en 6886  df-dom 6887
This theorem is referenced by:  fun2dmnop  11065  funvtxdm2vald  15826  funiedgdm2vald  15827
  Copyright terms: Public domain W3C validator