| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mptexg | Unicode version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| mptexg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funmpt 5296 | 
. 2
 | |
| 2 | eqid 2196 | 
. . . 4
 | |
| 3 | 2 | dmmptss 5166 | 
. . 3
 | 
| 4 | ssexg 4172 | 
. . 3
 | |
| 5 | 3, 4 | mpan 424 | 
. 2
 | 
| 6 | funex 5785 | 
. 2
 | |
| 7 | 1, 5, 6 | sylancr 414 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 | 
| This theorem is referenced by: mptex 5788 mptexd 5789 offval 6143 abrexexg 6175 xpexgALT 6190 offval3 6191 iunon 6342 mptelixpg 6793 updjud 7148 mkvprop 7224 cc3 7335 iseqf1olemqpcl 10601 seq3f1olemqsum 10605 seq3f1olemstep 10606 negfi 11393 climmpt 11465 restval 12916 mulgnngsum 13257 ntrfval 14336 clsfval 14337 neifval 14376 cnprcl2k 14442 upxp 14508 | 
| Copyright terms: Public domain | W3C validator |