ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexg Unicode version

Theorem mptexg 5522
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptexg  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem mptexg
StepHypRef Expression
1 funmpt 5052 . 2  |-  Fun  (
x  e.  A  |->  B )
2 eqid 2088 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32dmmptss 4927 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
4 ssexg 3978 . . 3  |-  ( ( dom  ( x  e.  A  |->  B )  C_  A  /\  A  e.  V
)  ->  dom  ( x  e.  A  |->  B )  e.  _V )
53, 4mpan 415 . 2  |-  ( A  e.  V  ->  dom  ( x  e.  A  |->  B )  e.  _V )
6 funex 5520 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V )  ->  ( x  e.  A  |->  B )  e. 
_V )
71, 5, 6sylancr 405 1  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438   _Vcvv 2619    C_ wss 2999    |-> cmpt 3899   dom cdm 4438   Fun wfun 5009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023
This theorem is referenced by:  mptex  5523  offval  5863  abrexexg  5889  xpexgALT  5904  offval3  5905  iunon  6049  updjud  6773  iseqf1olemqpcl  9925  seq3f1olemqsum  9929  seq3f1olemstep  9930  negfi  10659  climmpt  10688
  Copyright terms: Public domain W3C validator