ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexg Unicode version

Theorem mptexg 5783
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptexg  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem mptexg
StepHypRef Expression
1 funmpt 5292 . 2  |-  Fun  (
x  e.  A  |->  B )
2 eqid 2193 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32dmmptss 5162 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
4 ssexg 4168 . . 3  |-  ( ( dom  ( x  e.  A  |->  B )  C_  A  /\  A  e.  V
)  ->  dom  ( x  e.  A  |->  B )  e.  _V )
53, 4mpan 424 . 2  |-  ( A  e.  V  ->  dom  ( x  e.  A  |->  B )  e.  _V )
6 funex 5781 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V )  ->  ( x  e.  A  |->  B )  e. 
_V )
71, 5, 6sylancr 414 1  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   _Vcvv 2760    C_ wss 3153    |-> cmpt 4090   dom cdm 4659   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  mptex  5784  mptexd  5785  offval  6138  abrexexg  6170  xpexgALT  6185  offval3  6186  iunon  6337  mptelixpg  6788  updjud  7141  mkvprop  7217  cc3  7328  iseqf1olemqpcl  10580  seq3f1olemqsum  10584  seq3f1olemstep  10585  negfi  11371  climmpt  11443  restval  12856  mulgnngsum  13197  ntrfval  14268  clsfval  14269  neifval  14308  cnprcl2k  14374  upxp  14440
  Copyright terms: Public domain W3C validator