ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexg Unicode version

Theorem mptexg 5809
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptexg  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem mptexg
StepHypRef Expression
1 funmpt 5309 . 2  |-  Fun  (
x  e.  A  |->  B )
2 eqid 2205 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32dmmptss 5179 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
4 ssexg 4183 . . 3  |-  ( ( dom  ( x  e.  A  |->  B )  C_  A  /\  A  e.  V
)  ->  dom  ( x  e.  A  |->  B )  e.  _V )
53, 4mpan 424 . 2  |-  ( A  e.  V  ->  dom  ( x  e.  A  |->  B )  e.  _V )
6 funex 5807 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V )  ->  ( x  e.  A  |->  B )  e. 
_V )
71, 5, 6sylancr 414 1  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   _Vcvv 2772    C_ wss 3166    |-> cmpt 4105   dom cdm 4675   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by:  mptex  5810  mptexd  5811  offval  6166  abrexexg  6203  xpexgALT  6218  offval3  6219  iunon  6370  mptelixpg  6821  updjud  7184  mkvprop  7260  cc3  7380  iseqf1olemqpcl  10654  seq3f1olemqsum  10658  seq3f1olemstep  10659  negfi  11539  climmpt  11611  restval  13077  mulgnngsum  13463  ntrfval  14572  clsfval  14573  neifval  14612  cnprcl2k  14678  upxp  14744
  Copyright terms: Public domain W3C validator