ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexg Unicode version

Theorem mptexg 5832
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptexg  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem mptexg
StepHypRef Expression
1 funmpt 5328 . 2  |-  Fun  (
x  e.  A  |->  B )
2 eqid 2207 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32dmmptss 5198 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
4 ssexg 4199 . . 3  |-  ( ( dom  ( x  e.  A  |->  B )  C_  A  /\  A  e.  V
)  ->  dom  ( x  e.  A  |->  B )  e.  _V )
53, 4mpan 424 . 2  |-  ( A  e.  V  ->  dom  ( x  e.  A  |->  B )  e.  _V )
6 funex 5830 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V )  ->  ( x  e.  A  |->  B )  e. 
_V )
71, 5, 6sylancr 414 1  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   _Vcvv 2776    C_ wss 3174    |-> cmpt 4121   dom cdm 4693   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298
This theorem is referenced by:  mptex  5833  mptexd  5834  offval  6189  abrexexg  6226  xpexgALT  6241  offval3  6242  iunon  6393  mptelixpg  6844  updjud  7210  mkvprop  7286  cc3  7415  iseqf1olemqpcl  10691  seq3f1olemqsum  10695  seq3f1olemstep  10696  negfi  11654  climmpt  11726  restval  13192  mulgnngsum  13578  ntrfval  14687  clsfval  14688  neifval  14727  cnprcl2k  14793  upxp  14859
  Copyright terms: Public domain W3C validator