ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimassov Unicode version

Theorem funimassov 6068
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
funimassov  |-  ( ( Fun  F  /\  ( A  X.  B )  C_  dom  F )  ->  (
( F " ( A  X.  B ) ) 
C_  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, F, y

Proof of Theorem funimassov
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 funimass4 5607 . 2  |-  ( ( Fun  F  /\  ( A  X.  B )  C_  dom  F )  ->  (
( F " ( A  X.  B ) ) 
C_  C  <->  A. z  e.  ( A  X.  B
) ( F `  z )  e.  C
) )
2 fveq2 5554 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5921 . . . . 5  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2244 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54eleq1d 2262 . . 3  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  e.  C  <->  ( x F y )  e.  C
) )
65ralxp 4805 . 2  |-  ( A. z  e.  ( A  X.  B ) ( F `
 z )  e.  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )
71, 6bitrdi 196 1  |-  ( ( Fun  F  /\  ( A  X.  B )  C_  dom  F )  ->  (
( F " ( A  X.  B ) ) 
C_  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   <.cop 3621    X. cxp 4657   dom cdm 4659   "cima 4662   Fun wfun 5248   ` cfv 5254  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator