| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funiunfvdm | GIF version | ||
| Description: The indexed union of a function's values is the union of its image under the index class. This theorem is a slight variation of fniunfv 5854. (Contributed by Jim Kingdon, 10-Jan-2019.) |
| Ref | Expression |
|---|---|
| funiunfvdm | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fniunfv 5854 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) | |
| 2 | imadmrn 5051 | . . . 4 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 3 | fndm 5392 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | imaeq2d 5041 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 5 | 2, 4 | eqtr3id 2254 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹 “ 𝐴)) |
| 6 | 5 | unieqd 3875 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ (𝐹 “ 𝐴)) |
| 7 | 1, 6 | eqtrd 2240 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∪ cuni 3864 ∪ ciun 3941 dom cdm 4693 ran crn 4694 “ cima 4696 Fn wfn 5285 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: funiunfvdmf 5856 eluniimadm 5857 |
| Copyright terms: Public domain | W3C validator |