ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdm GIF version

Theorem funiunfvdm 5813
Description: The indexed union of a function's values is the union of its image under the index class. This theorem is a slight variation of fniunfv 5812. (Contributed by Jim Kingdon, 10-Jan-2019.)
Assertion
Ref Expression
funiunfvdm (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem funiunfvdm
StepHypRef Expression
1 fniunfv 5812 . 2 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
2 imadmrn 5020 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
3 fndm 5358 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43imaeq2d 5010 . . . 4 (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
52, 4eqtr3id 2243 . . 3 (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹𝐴))
65unieqd 3851 . 2 (𝐹 Fn 𝐴 ran 𝐹 = (𝐹𝐴))
71, 6eqtrd 2229 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   cuni 3840   ciun 3917  dom cdm 4664  ran crn 4665  cima 4667   Fn wfn 5254  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267
This theorem is referenced by:  funiunfvdmf  5814  eluniimadm  5815
  Copyright terms: Public domain W3C validator