Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funoprab | Unicode version |
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
funoprab.1 |
Ref | Expression |
---|---|
funoprab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funoprab.1 | . . 3 | |
2 | 1 | gen2 1430 | . 2 |
3 | funoprabg 5921 | . 2 | |
4 | 2, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wal 1333 wmo 2007 wfun 5165 coprab 5826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3967 df-opab 4027 df-id 4254 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-fun 5173 df-oprab 5829 |
This theorem is referenced by: mpofun 5924 ovidig 5939 ovigg 5942 oprabex 6077 th3qcor 6585 axaddf 7789 axmulf 7790 |
Copyright terms: Public domain | W3C validator |