ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovigg Unicode version

Theorem ovigg 6124
Description: The value of an operation class abstraction. Compare ovig 6125. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovigg.1  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
ovigg.4  |-  E* z ph
ovigg.5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
ovigg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  ( A F B )  =  C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ovigg
StepHypRef Expression
1 ovigg.1 . . 3  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
21eloprabga 6090 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
)
3 df-ov 6003 . . . 4  |-  ( A F B )  =  ( F `  <. A ,  B >. )
4 ovigg.5 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
54fveq1i 5627 . . . 4  |-  ( F `
 <. A ,  B >. )  =  ( {
<. <. x ,  y
>. ,  z >.  | 
ph } `  <. A ,  B >. )
63, 5eqtri 2250 . . 3  |-  ( A F B )  =  ( { <. <. x ,  y >. ,  z
>.  |  ph } `  <. A ,  B >. )
7 ovigg.4 . . . . 5  |-  E* z ph
87funoprab 6103 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
9 funopfv 5670 . . . 4  |-  ( Fun 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  ->  ( { <. <. x ,  y
>. ,  z >.  | 
ph } `  <. A ,  B >. )  =  C ) )
108, 9ax-mp 5 . . 3  |-  ( <. <. A ,  B >. ,  C >.  e.  { <. <.
x ,  y >. ,  z >.  |  ph }  ->  ( { <. <.
x ,  y >. ,  z >.  |  ph } `  <. A ,  B >. )  =  C )
116, 10eqtrid 2274 . 2  |-  ( <. <. A ,  B >. ,  C >.  e.  { <. <.
x ,  y >. ,  z >.  |  ph }  ->  ( A F B )  =  C )
122, 11biimtrrdi 164 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  ( A F B )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395   E*wmo 2078    e. wcel 2200   <.cop 3669   Fun wfun 5311   ` cfv 5317  (class class class)co 6000   {coprab 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004
This theorem is referenced by:  ovig  6125
  Copyright terms: Public domain W3C validator