ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovigg Unicode version

Theorem ovigg 5931
Description: The value of an operation class abstraction. Compare ovig 5932. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovigg.1  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
ovigg.4  |-  E* z ph
ovigg.5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
ovigg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  ( A F B )  =  C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ovigg
StepHypRef Expression
1 ovigg.1 . . 3  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
21eloprabga 5898 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
)
3 df-ov 5817 . . . 4  |-  ( A F B )  =  ( F `  <. A ,  B >. )
4 ovigg.5 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
54fveq1i 5462 . . . 4  |-  ( F `
 <. A ,  B >. )  =  ( {
<. <. x ,  y
>. ,  z >.  | 
ph } `  <. A ,  B >. )
63, 5eqtri 2175 . . 3  |-  ( A F B )  =  ( { <. <. x ,  y >. ,  z
>.  |  ph } `  <. A ,  B >. )
7 ovigg.4 . . . . 5  |-  E* z ph
87funoprab 5911 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
9 funopfv 5501 . . . 4  |-  ( Fun 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  ->  ( { <. <. x ,  y
>. ,  z >.  | 
ph } `  <. A ,  B >. )  =  C ) )
108, 9ax-mp 5 . . 3  |-  ( <. <. A ,  B >. ,  C >.  e.  { <. <.
x ,  y >. ,  z >.  |  ph }  ->  ( { <. <.
x ,  y >. ,  z >.  |  ph } `  <. A ,  B >. )  =  C )
116, 10syl5eq 2199 . 2  |-  ( <. <. A ,  B >. ,  C >.  e.  { <. <.
x ,  y >. ,  z >.  |  ph }  ->  ( A F B )  =  C )
122, 11syl6bir 163 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  ( A F B )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 963    = wceq 1332   E*wmo 2004    e. wcel 2125   <.cop 3559   Fun wfun 5157   ` cfv 5163  (class class class)co 5814   {coprab 5815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-ov 5817  df-oprab 5818
This theorem is referenced by:  ovig  5932
  Copyright terms: Public domain W3C validator