ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidig Unicode version

Theorem ovidig 5959
Description: The value of an operation class abstraction. Compare ovidi 5960. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidig.1  |-  E* z ph
ovidig.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
ovidig  |-  ( ph  ->  ( x F y )  =  z )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem ovidig
StepHypRef Expression
1 df-ov 5845 . 2  |-  ( x F y )  =  ( F `  <. x ,  y >. )
2 ovidig.1 . . . . 5  |-  E* z ph
32funoprab 5942 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
4 ovidig.2 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
54funeqi 5209 . . . 4  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
63, 5mpbir 145 . . 3  |-  Fun  F
7 oprabid 5874 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
87biimpri 132 . . . 4  |-  ( ph  -> 
<. <. x ,  y
>. ,  z >.  e. 
{ <. <. x ,  y
>. ,  z >.  | 
ph } )
98, 4eleqtrrdi 2260 . . 3  |-  ( ph  -> 
<. <. x ,  y
>. ,  z >.  e.  F )
10 funopfv 5526 . . 3  |-  ( Fun 
F  ->  ( <. <.
x ,  y >. ,  z >.  e.  F  ->  ( F `  <. x ,  y >. )  =  z ) )
116, 9, 10mpsyl 65 . 2  |-  ( ph  ->  ( F `  <. x ,  y >. )  =  z )
121, 11syl5eq 2211 1  |-  ( ph  ->  ( x F y )  =  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E*wmo 2015    e. wcel 2136   <.cop 3579   Fun wfun 5182   ` cfv 5188  (class class class)co 5842   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846
This theorem is referenced by:  ovidi  5960
  Copyright terms: Public domain W3C validator