ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidig Unicode version

Theorem ovidig 5854
Description: The value of an operation class abstraction. Compare ovidi 5855. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidig.1  |-  E* z ph
ovidig.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
ovidig  |-  ( ph  ->  ( x F y )  =  z )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem ovidig
StepHypRef Expression
1 df-ov 5743 . 2  |-  ( x F y )  =  ( F `  <. x ,  y >. )
2 ovidig.1 . . . . 5  |-  E* z ph
32funoprab 5837 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
4 ovidig.2 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
54funeqi 5112 . . . 4  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
63, 5mpbir 145 . . 3  |-  Fun  F
7 oprabid 5769 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
87biimpri 132 . . . 4  |-  ( ph  -> 
<. <. x ,  y
>. ,  z >.  e. 
{ <. <. x ,  y
>. ,  z >.  | 
ph } )
98, 4syl6eleqr 2209 . . 3  |-  ( ph  -> 
<. <. x ,  y
>. ,  z >.  e.  F )
10 funopfv 5427 . . 3  |-  ( Fun 
F  ->  ( <. <.
x ,  y >. ,  z >.  e.  F  ->  ( F `  <. x ,  y >. )  =  z ) )
116, 9, 10mpsyl 65 . 2  |-  ( ph  ->  ( F `  <. x ,  y >. )  =  z )
121, 11syl5eq 2160 1  |-  ( ph  ->  ( x F y )  =  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   E*wmo 1976   <.cop 3498   Fun wfun 5085   ` cfv 5091  (class class class)co 5740   {coprab 5741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-ov 5743  df-oprab 5744
This theorem is referenced by:  ovidi  5855
  Copyright terms: Public domain W3C validator