ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidig Unicode version

Theorem ovidig 6065
Description: The value of an operation class abstraction. Compare ovidi 6066. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidig.1  |-  E* z ph
ovidig.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
ovidig  |-  ( ph  ->  ( x F y )  =  z )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem ovidig
StepHypRef Expression
1 df-ov 5949 . 2  |-  ( x F y )  =  ( F `  <. x ,  y >. )
2 ovidig.1 . . . . 5  |-  E* z ph
32funoprab 6047 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
4 ovidig.2 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
54funeqi 5293 . . . 4  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
63, 5mpbir 146 . . 3  |-  Fun  F
7 oprabid 5978 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
87biimpri 133 . . . 4  |-  ( ph  -> 
<. <. x ,  y
>. ,  z >.  e. 
{ <. <. x ,  y
>. ,  z >.  | 
ph } )
98, 4eleqtrrdi 2299 . . 3  |-  ( ph  -> 
<. <. x ,  y
>. ,  z >.  e.  F )
10 funopfv 5620 . . 3  |-  ( Fun 
F  ->  ( <. <.
x ,  y >. ,  z >.  e.  F  ->  ( F `  <. x ,  y >. )  =  z ) )
116, 9, 10mpsyl 65 . 2  |-  ( ph  ->  ( F `  <. x ,  y >. )  =  z )
121, 11eqtrid 2250 1  |-  ( ph  ->  ( x F y )  =  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   E*wmo 2055    e. wcel 2176   <.cop 3636   Fun wfun 5266   ` cfv 5272  (class class class)co 5946   {coprab 5947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950
This theorem is referenced by:  ovidi  6066
  Copyright terms: Public domain W3C validator