ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  th3qcor Unicode version

Theorem th3qcor 6329
Description: Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
th3q.1  |-  .~  e.  _V
th3q.2  |-  .~  Er  ( S  X.  S
)
th3q.4  |-  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  /\  ( (
s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S
) ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )
th3q.5  |-  G  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) }
Assertion
Ref Expression
th3qcor  |-  Fun  G
Distinct variable groups:    x, y, z, w, v, u, t, s, f, g, h, 
.~    x, S, y, z, w, v, u, t, s, f, g, h   
x,  .+ , y, z, w, v, u, t, s, f, g, h
Allowed substitution hints:    G( x, y, z, w, v, u, t, f, g, h, s)

Proof of Theorem th3qcor
StepHypRef Expression
1 th3q.1 . . . . 5  |-  .~  e.  _V
2 th3q.2 . . . . 5  |-  .~  Er  ( S  X.  S
)
3 th3q.4 . . . . 5  |-  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  /\  ( (
s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S
) ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )
41, 2, 3th3qlem2 6328 . . . 4  |-  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )
)
5 moanimv 2020 . . . 4  |-  ( E* z ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
)  <->  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )
) )
64, 5mpbir 144 . . 3  |-  E* z
( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
)
76funoprab 5683 . 2  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) }
8 th3q.5 . . 3  |-  G  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) }
98funeqi 4992 . 2  |-  ( Fun 
G  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) } )
107, 9mpbir 144 1  |-  Fun  G
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1287   E.wex 1424    e. wcel 1436   E*wmo 1946   _Vcvv 2614   <.cop 3428   class class class wbr 3814    X. cxp 4402   Fun wfun 4966  (class class class)co 5594   {coprab 5595    Er wer 6222   [cec 6223   /.cqs 6224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2616  df-sbc 2829  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fv 4980  df-ov 5597  df-oprab 5598  df-er 6225  df-ec 6227  df-qs 6231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator