ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  th3qcor Unicode version

Theorem th3qcor 6726
Description: Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
th3q.1  |-  .~  e.  _V
th3q.2  |-  .~  Er  ( S  X.  S
)
th3q.4  |-  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  /\  ( (
s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S
) ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )
th3q.5  |-  G  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) }
Assertion
Ref Expression
th3qcor  |-  Fun  G
Distinct variable groups:    x, y, z, w, v, u, t, s, f, g, h, 
.~    x, S, y, z, w, v, u, t, s, f, g, h   
x,  .+ , y, z, w, v, u, t, s, f, g, h
Allowed substitution hints:    G( x, y, z, w, v, u, t, f, g, h, s)

Proof of Theorem th3qcor
StepHypRef Expression
1 th3q.1 . . . . 5  |-  .~  e.  _V
2 th3q.2 . . . . 5  |-  .~  Er  ( S  X.  S
)
3 th3q.4 . . . . 5  |-  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  /\  ( (
s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S
) ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )
41, 2, 3th3qlem2 6725 . . . 4  |-  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )
)
5 moanimv 2129 . . . 4  |-  ( E* z ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
)  <->  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )
) )
64, 5mpbir 146 . . 3  |-  E* z
( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
)
76funoprab 6045 . 2  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) }
8 th3q.5 . . 3  |-  G  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) }
98funeqi 5292 . 2  |-  ( Fun 
G  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) } )
107, 9mpbir 146 1  |-  Fun  G
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515   E*wmo 2055    e. wcel 2176   _Vcvv 2772   <.cop 3636   class class class wbr 4044    X. cxp 4673   Fun wfun 5265  (class class class)co 5944   {coprab 5945    Er wer 6617   [cec 6618   /.cqs 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-er 6620  df-ec 6622  df-qs 6626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator