ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2d Unicode version

Theorem fvmpt2d 5571
Description: Deduction version of fvmpt2 5568. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fvmpt2d.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
fvmpt2d  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
21fveq1d 5487 . . 3  |-  ( ph  ->  ( F `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
32adantr 274 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( ( x  e.  A  |->  B ) `
 x ) )
4 simpr 109 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
5 fvmpt2d.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
6 eqid 2165 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fvmpt2 5568 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
84, 5, 7syl2anc 409 . 2  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
93, 8eqtrd 2198 1  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    |-> cmpt 4042   ` cfv 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-sbc 2951  df-csb 3045  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195
This theorem is referenced by:  iseqf1olemjpcl  10426  iseqf1olemqpcl  10427  isumshft  11427  bj-charfun  13649  bj-charfundc  13650
  Copyright terms: Public domain W3C validator