ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2d Unicode version

Theorem fvmpt2d 5679
Description: Deduction version of fvmpt2 5676. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fvmpt2d.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
fvmpt2d  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
21fveq1d 5591 . . 3  |-  ( ph  ->  ( F `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
32adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( ( x  e.  A  |->  B ) `
 x ) )
4 simpr 110 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
5 fvmpt2d.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
6 eqid 2206 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fvmpt2 5676 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
84, 5, 7syl2anc 411 . 2  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
93, 8eqtrd 2239 1  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    |-> cmpt 4113   ` cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288
This theorem is referenced by:  iseqf1olemjpcl  10675  iseqf1olemqpcl  10676  isumshft  11876  bj-charfun  15881  bj-charfundc  15882
  Copyright terms: Public domain W3C validator