ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2d Unicode version

Theorem fvmpt2d 5582
Description: Deduction version of fvmpt2 5579. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fvmpt2d.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
fvmpt2d  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
21fveq1d 5498 . . 3  |-  ( ph  ->  ( F `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
32adantr 274 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( ( x  e.  A  |->  B ) `
 x ) )
4 simpr 109 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
5 fvmpt2d.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
6 eqid 2170 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fvmpt2 5579 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
84, 5, 7syl2anc 409 . 2  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
93, 8eqtrd 2203 1  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    |-> cmpt 4050   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  iseqf1olemjpcl  10451  iseqf1olemqpcl  10452  isumshft  11453  bj-charfun  13842  bj-charfundc  13843
  Copyright terms: Public domain W3C validator