![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvopab3g | GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fvopab3g.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab3g.3 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
fvopab3g.4 | ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦𝜑) |
fvopab3g.5 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab3g | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2157 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | fvopab3g.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 458 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝐴 ∈ 𝐶 ∧ 𝜓))) |
4 | fvopab3g.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 4 | anbi2d 453 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝜓) ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
6 | 3, 5 | opelopabg 4119 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
7 | fvopab3g.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦𝜑) | |
8 | fvopab3g.5 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} | |
9 | 7, 8 | fnopab 5172 | . . . . 5 ⊢ 𝐹 Fn 𝐶 |
10 | fnopfvb 5381 | . . . . 5 ⊢ ((𝐹 Fn 𝐶 ∧ 𝐴 ∈ 𝐶) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | |
11 | 9, 10 | mpan 416 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) |
12 | 8 | eleq2i 2161 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐹 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}) |
13 | 11, 12 | syl6bb 195 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
14 | 13 | adantr 271 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
15 | ibar 296 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝜒 ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) | |
16 | 15 | adantr 271 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
17 | 6, 14, 16 | 3bitr4d 219 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∈ wcel 1445 ∃!weu 1955 〈cop 3469 {copab 3920 Fn wfn 5044 ‘cfv 5049 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fn 5052 df-fv 5057 |
This theorem is referenced by: recmulnqg 7047 |
Copyright terms: Public domain | W3C validator |