| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvopab3g | GIF version | ||
| Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fvopab3g.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| fvopab3g.3 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| fvopab3g.4 | ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦𝜑) |
| fvopab3g.5 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fvopab3g | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 2 | fvopab3g.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝐴 ∈ 𝐶 ∧ 𝜓))) |
| 4 | fvopab3g.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | anbi2d 464 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝜓) ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
| 6 | 3, 5 | opelopabg 4314 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
| 7 | fvopab3g.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦𝜑) | |
| 8 | fvopab3g.5 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} | |
| 9 | 7, 8 | fnopab 5400 | . . . . 5 ⊢ 𝐹 Fn 𝐶 |
| 10 | fnopfvb 5620 | . . . . 5 ⊢ ((𝐹 Fn 𝐶 ∧ 𝐴 ∈ 𝐶) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | |
| 11 | 9, 10 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) |
| 12 | 8 | eleq2i 2272 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐹 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}) |
| 13 | 11, 12 | bitrdi 196 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
| 14 | 13 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
| 15 | ibar 301 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝜒 ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) | |
| 16 | 15 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
| 17 | 6, 14, 16 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃!weu 2054 ∈ wcel 2176 〈cop 3636 {copab 4104 Fn wfn 5266 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 |
| This theorem is referenced by: recmulnqg 7504 |
| Copyright terms: Public domain | W3C validator |