ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulc1cncf Unicode version

Theorem mulc1cncf 14979
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1  |-  F  =  ( x  e.  CC  |->  ( A  x.  x
) )
Assertion
Ref Expression
mulc1cncf  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem mulc1cncf
Dummy variables  u  t  v  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 8034 . . 3  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  e.  CC )
2 mulc1cncf.1 . . 3  |-  F  =  ( x  e.  CC  |->  ( A  x.  x
) )
31, 2fmptd 5728 . 2  |-  ( A  e.  CC  ->  F : CC --> CC )
4 simprr 531 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  z  e.  RR+ )
5 simpl 109 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  A  e.  CC )
6 simprl 529 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  y  e.  CC )
7 mulcn2 11542 . . . . 5  |-  ( ( z  e.  RR+  /\  A  e.  CC  /\  y  e.  CC )  ->  E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z ) )
84, 5, 6, 7syl3anc 1249 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z ) )
9 fvoveq1 5957 . . . . . . . . . . . . . 14  |-  ( v  =  A  ->  ( abs `  ( v  -  A ) )  =  ( abs `  ( A  -  A )
) )
109breq1d 4053 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  (
( abs `  (
v  -  A ) )  <  t  <->  ( abs `  ( A  -  A
) )  <  t
) )
1110anbi1d 465 . . . . . . . . . . . 12  |-  ( v  =  A  ->  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  <->  ( ( abs `  ( A  -  A ) )  < 
t  /\  ( abs `  ( u  -  y
) )  <  w
) ) )
12 oveq1 5941 . . . . . . . . . . . . . 14  |-  ( v  =  A  ->  (
v  x.  u )  =  ( A  x.  u ) )
1312fvoveq1d 5956 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  =  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) ) )
1413breq1d 4053 . . . . . . . . . . . 12  |-  ( v  =  A  ->  (
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z  <->  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) )  <  z
) )
1511, 14imbi12d 234 . . . . . . . . . . 11  |-  ( v  =  A  ->  (
( ( ( abs `  ( v  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1615ralbidv 2505 . . . . . . . . . 10  |-  ( v  =  A  ->  ( A. u  e.  CC  ( ( ( abs `  ( v  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  <->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1716rspcv 2872 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1817ad2antrr 488 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
19 subid 8273 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
2019ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( A  -  A
)  =  0 )
2120abs00bd 11296 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  =  0 )
22 simprll 537 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
t  e.  RR+ )
2322rpgt0d 9803 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
0  <  t )
2421, 23eqbrtrd 4065 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  <  t )
2524biantrurd 305 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( abs `  (
u  -  y ) )  <  w  <->  ( ( abs `  ( A  -  A ) )  < 
t  /\  ( abs `  ( u  -  y
) )  <  w
) ) )
26 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  ->  u  e.  CC )
27 simpll 527 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  ->  A  e.  CC )
2827, 26mulcld 8075 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( A  x.  u
)  e.  CC )
29 oveq2 5942 . . . . . . . . . . . . . . . 16  |-  ( x  =  u  ->  ( A  x.  x )  =  ( A  x.  u ) )
3029, 2fvmptg 5649 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  CC  /\  ( A  x.  u
)  e.  CC )  ->  ( F `  u )  =  ( A  x.  u ) )
3126, 28, 30syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( F `  u
)  =  ( A  x.  u ) )
32 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
y  e.  CC )
3327, 32mulcld 8075 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( A  x.  y
)  e.  CC )
34 oveq2 5942 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
3534, 2fvmptg 5649 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  CC  /\  ( A  x.  y
)  e.  CC )  ->  ( F `  y )  =  ( A  x.  y ) )
3632, 33, 35syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( F `  y
)  =  ( A  x.  y ) )
3731, 36oveq12d 5952 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( F `  u )  -  ( F `  y )
)  =  ( ( A  x.  u )  -  ( A  x.  y ) ) )
3837fveq2d 5574 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) ) )
3938breq1d 4053 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z  <->  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) )  <  z
) )
4025, 39imbi12d 234 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4140anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ ) )  /\  ( t  e.  RR+  /\  w  e.  RR+ )
)  /\  u  e.  CC )  ->  ( ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4241ralbidva 2501 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. u  e.  CC  ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4318, 42sylibrd 169 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4443anassrs 400 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ ) )  /\  t  e.  RR+ )  /\  w  e.  RR+ )  -> 
( A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4544reximdva 2607 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  t  e.  RR+ )  ->  ( E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4645rexlimdva 2622 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  ( E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
478, 46mpd 13 . . 3  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) )
4847ralrimivva 2587 . 2  |-  ( A  e.  CC  ->  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) )
49 ssid 3212 . . 3  |-  CC  C_  CC
50 elcncf2 14964 . . 3  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  ( F  e.  ( CC -cn-> CC )  <->  ( F : CC
--> CC  /\  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) ) )
5149, 49, 50mp2an 426 . 2  |-  ( F  e.  ( CC -cn-> CC )  <->  ( F : CC
--> CC  /\  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
523, 48, 51sylanbrc 417 1  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484    C_ wss 3165   class class class wbr 4043    |-> cmpt 4104   -->wf 5264   ` cfv 5268  (class class class)co 5934   CCcc 7905   0cc0 7907    x. cmul 7912    < clt 8089    - cmin 8225   RR+crp 9757   abscabs 11227   -cn->ccncf 14960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-map 6727  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-rp 9758  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-cncf 14961
This theorem is referenced by:  divccncfap  14980  cdivcncfap  14994  sincn  15159  coscn  15160
  Copyright terms: Public domain W3C validator