ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmptfvd Unicode version

Theorem fnmptfvd 5739
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
fnmptfvd.m  |-  ( ph  ->  M  Fn  A )
fnmptfvd.s  |-  ( i  =  a  ->  D  =  C )
fnmptfvd.d  |-  ( (
ph  /\  i  e.  A )  ->  D  e.  U )
fnmptfvd.c  |-  ( (
ph  /\  a  e.  A )  ->  C  e.  V )
Assertion
Ref Expression
fnmptfvd  |-  ( ph  ->  ( M  =  ( a  e.  A  |->  C )  <->  A. i  e.  A  ( M `  i )  =  D ) )
Distinct variable groups:    A, a, i    C, i    D, a    M, a, i    U, a, i    V, a, i    ph, a,
i
Allowed substitution hints:    C( a)    D( i)

Proof of Theorem fnmptfvd
StepHypRef Expression
1 fnmptfvd.m . . 3  |-  ( ph  ->  M  Fn  A )
2 fnmptfvd.c . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  C  e.  V )
32ralrimiva 2603 . . . 4  |-  ( ph  ->  A. a  e.  A  C  e.  V )
4 eqid 2229 . . . . 5  |-  ( a  e.  A  |->  C )  =  ( a  e.  A  |->  C )
54fnmpt 5450 . . . 4  |-  ( A. a  e.  A  C  e.  V  ->  ( a  e.  A  |->  C )  Fn  A )
63, 5syl 14 . . 3  |-  ( ph  ->  ( a  e.  A  |->  C )  Fn  A
)
7 eqfnfv 5732 . . 3  |-  ( ( M  Fn  A  /\  ( a  e.  A  |->  C )  Fn  A
)  ->  ( M  =  ( a  e.  A  |->  C )  <->  A. i  e.  A  ( M `  i )  =  ( ( a  e.  A  |->  C ) `  i
) ) )
81, 6, 7syl2anc 411 . 2  |-  ( ph  ->  ( M  =  ( a  e.  A  |->  C )  <->  A. i  e.  A  ( M `  i )  =  ( ( a  e.  A  |->  C ) `
 i ) ) )
9 fnmptfvd.s . . . . . . . 8  |-  ( i  =  a  ->  D  =  C )
109cbvmptv 4180 . . . . . . 7  |-  ( i  e.  A  |->  D )  =  ( a  e.  A  |->  C )
1110eqcomi 2233 . . . . . 6  |-  ( a  e.  A  |->  C )  =  ( i  e.  A  |->  D )
1211a1i 9 . . . . 5  |-  ( ph  ->  ( a  e.  A  |->  C )  =  ( i  e.  A  |->  D ) )
1312fveq1d 5629 . . . 4  |-  ( ph  ->  ( ( a  e.  A  |->  C ) `  i )  =  ( ( i  e.  A  |->  D ) `  i
) )
1413eqeq2d 2241 . . 3  |-  ( ph  ->  ( ( M `  i )  =  ( ( a  e.  A  |->  C ) `  i
)  <->  ( M `  i )  =  ( ( i  e.  A  |->  D ) `  i
) ) )
1514ralbidv 2530 . 2  |-  ( ph  ->  ( A. i  e.  A  ( M `  i )  =  ( ( a  e.  A  |->  C ) `  i
)  <->  A. i  e.  A  ( M `  i )  =  ( ( i  e.  A  |->  D ) `
 i ) ) )
16 simpr 110 . . . . 5  |-  ( (
ph  /\  i  e.  A )  ->  i  e.  A )
17 fnmptfvd.d . . . . 5  |-  ( (
ph  /\  i  e.  A )  ->  D  e.  U )
18 eqid 2229 . . . . . 6  |-  ( i  e.  A  |->  D )  =  ( i  e.  A  |->  D )
1918fvmpt2 5718 . . . . 5  |-  ( ( i  e.  A  /\  D  e.  U )  ->  ( ( i  e.  A  |->  D ) `  i )  =  D )
2016, 17, 19syl2anc 411 . . . 4  |-  ( (
ph  /\  i  e.  A )  ->  (
( i  e.  A  |->  D ) `  i
)  =  D )
2120eqeq2d 2241 . . 3  |-  ( (
ph  /\  i  e.  A )  ->  (
( M `  i
)  =  ( ( i  e.  A  |->  D ) `  i )  <-> 
( M `  i
)  =  D ) )
2221ralbidva 2526 . 2  |-  ( ph  ->  ( A. i  e.  A  ( M `  i )  =  ( ( i  e.  A  |->  D ) `  i
)  <->  A. i  e.  A  ( M `  i )  =  D ) )
238, 15, 223bitrd 214 1  |-  ( ph  ->  ( M  =  ( a  e.  A  |->  C )  <->  A. i  e.  A  ( M `  i )  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508    |-> cmpt 4145    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  nninfdcinf  7338  nninfwlporlemd  7339  nninfwlporlem  7340
  Copyright terms: Public domain W3C validator