| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmptfvd | Unicode version | ||
| Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.) |
| Ref | Expression |
|---|---|
| fnmptfvd.m |
|
| fnmptfvd.s |
|
| fnmptfvd.d |
|
| fnmptfvd.c |
|
| Ref | Expression |
|---|---|
| fnmptfvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmptfvd.m |
. . 3
| |
| 2 | fnmptfvd.c |
. . . . 5
| |
| 3 | 2 | ralrimiva 2603 |
. . . 4
|
| 4 | eqid 2229 |
. . . . 5
| |
| 5 | 4 | fnmpt 5450 |
. . . 4
|
| 6 | 3, 5 | syl 14 |
. . 3
|
| 7 | eqfnfv 5732 |
. . 3
| |
| 8 | 1, 6, 7 | syl2anc 411 |
. 2
|
| 9 | fnmptfvd.s |
. . . . . . . 8
| |
| 10 | 9 | cbvmptv 4180 |
. . . . . . 7
|
| 11 | 10 | eqcomi 2233 |
. . . . . 6
|
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | 12 | fveq1d 5629 |
. . . 4
|
| 14 | 13 | eqeq2d 2241 |
. . 3
|
| 15 | 14 | ralbidv 2530 |
. 2
|
| 16 | simpr 110 |
. . . . 5
| |
| 17 | fnmptfvd.d |
. . . . 5
| |
| 18 | eqid 2229 |
. . . . . 6
| |
| 19 | 18 | fvmpt2 5718 |
. . . . 5
|
| 20 | 16, 17, 19 | syl2anc 411 |
. . . 4
|
| 21 | 20 | eqeq2d 2241 |
. . 3
|
| 22 | 21 | ralbidva 2526 |
. 2
|
| 23 | 8, 15, 22 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: nninfdcinf 7338 nninfwlporlemd 7339 nninfwlporlem 7340 |
| Copyright terms: Public domain | W3C validator |