ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmmhm Unicode version

Theorem ghmmhm 13459
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhm  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )

Proof of Theorem ghmmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 13451 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
21grpmndd 13215 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Mnd )
3 ghmgrp2 13452 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
43grpmndd 13215 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Mnd )
5 eqid 2196 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
6 eqid 2196 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
75, 6ghmf 13453 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
8 eqid 2196 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
9 eqid 2196 . . . . . 6  |-  ( +g  `  T )  =  ( +g  `  T )
105, 8, 9ghmlin 13454 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
11103expb 1206 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
1211ralrimivva 2579 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
13 eqid 2196 . . . 4  |-  ( 0g
`  S )  =  ( 0g `  S
)
14 eqid 2196 . . . 4  |-  ( 0g
`  T )  =  ( 0g `  T
)
1513, 14ghmid 13455 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
167, 12, 153jca 1179 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) )
175, 6, 8, 9, 13, 14ismhm 13163 . 2  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) ) )
182, 4, 16, 17syl21anbrc 1184 1  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   -->wf 5255   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Mndcmnd 13118   MndHom cmhm 13159    GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-ghm 13447
This theorem is referenced by:  ghmmhmb  13460  ghmmulg  13462  resghm2  13467  ghmco  13470  ghmeql  13473  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator