ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmmhm Unicode version

Theorem ghmmhm 13209
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhm  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )

Proof of Theorem ghmmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 13201 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
21grpmndd 12973 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Mnd )
3 ghmgrp2 13202 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
43grpmndd 12973 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Mnd )
5 eqid 2189 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
6 eqid 2189 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
75, 6ghmf 13203 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
8 eqid 2189 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
9 eqid 2189 . . . . . 6  |-  ( +g  `  T )  =  ( +g  `  T )
105, 8, 9ghmlin 13204 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
11103expb 1206 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
1211ralrimivva 2572 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
13 eqid 2189 . . . 4  |-  ( 0g
`  S )  =  ( 0g `  S
)
14 eqid 2189 . . . 4  |-  ( 0g
`  T )  =  ( 0g `  T
)
1513, 14ghmid 13205 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
167, 12, 153jca 1179 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) )
175, 6, 8, 9, 13, 14ismhm 12928 . 2  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) ) )
182, 4, 16, 17syl21anbrc 1184 1  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   -->wf 5231   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592   0gc0g 12764   Mndcmnd 12892   MndHom cmhm 12924    GrpHom cghm 13196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-mhm 12926  df-grp 12963  df-ghm 13197
This theorem is referenced by:  ghmmhmb  13210  ghmmulg  13212  resghm2  13217  ghmco  13220  ghmeql  13223
  Copyright terms: Public domain W3C validator