| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpmnd | Unicode version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 |
. . 3
| |
| 2 | eqid 2206 |
. . 3
| |
| 3 | eqid 2206 |
. . 3
| |
| 4 | 1, 2, 3 | isgrp 13413 |
. 2
|
| 5 | 4 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-grp 13410 |
| This theorem is referenced by: grpcl 13415 grpass 13416 grpideu 13418 grpmndd 13420 grpplusf 13422 grpplusfo 13423 grpsgrp 13432 dfgrp2 13434 grpidcl 13436 grplid 13438 grprid 13439 dfgrp3m 13506 prdsgrpd 13516 prdsinvgd 13517 mulgaddcom 13557 mulginvcom 13558 mulgz 13561 mulgneg2 13567 mulgass 13570 issubg3 13603 grpissubg 13605 0subg 13610 ghmex 13666 0ghm 13669 isabl2 13705 |
| Copyright terms: Public domain | W3C validator |