| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpmnd | Unicode version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | eqid 2196 |
. . 3
| |
| 3 | eqid 2196 |
. . 3
| |
| 4 | 1, 2, 3 | isgrp 13208 |
. 2
|
| 5 | 4 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-grp 13205 |
| This theorem is referenced by: grpcl 13210 grpass 13211 grpideu 13213 grpmndd 13215 grpplusf 13217 grpplusfo 13218 grpsgrp 13227 dfgrp2 13229 grpidcl 13231 grplid 13233 grprid 13234 dfgrp3m 13301 prdsgrpd 13311 prdsinvgd 13312 mulgaddcom 13352 mulginvcom 13353 mulgz 13356 mulgneg2 13362 mulgass 13365 issubg3 13398 grpissubg 13400 0subg 13405 ghmex 13461 0ghm 13464 isabl2 13500 |
| Copyright terms: Public domain | W3C validator |