| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpmnd | Unicode version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | eqid 2229 |
. . 3
| |
| 3 | eqid 2229 |
. . 3
| |
| 4 | 1, 2, 3 | isgrp 13534 |
. 2
|
| 5 | 4 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-grp 13531 |
| This theorem is referenced by: grpcl 13536 grpass 13537 grpideu 13539 grpmndd 13541 grpplusf 13543 grpplusfo 13544 grpsgrp 13553 dfgrp2 13555 grpidcl 13557 grplid 13559 grprid 13560 dfgrp3m 13627 prdsgrpd 13637 prdsinvgd 13638 mulgaddcom 13678 mulginvcom 13679 mulgz 13682 mulgneg2 13688 mulgass 13691 issubg3 13724 grpissubg 13726 0subg 13731 ghmex 13787 0ghm 13790 isabl2 13826 |
| Copyright terms: Public domain | W3C validator |