| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grpmnd | Unicode version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| grpmnd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. . 3
 | |
| 2 | eqid 2196 | 
. . 3
 | |
| 3 | eqid 2196 | 
. . 3
 | |
| 4 | 1, 2, 3 | isgrp 13138 | 
. 2
 | 
| 5 | 4 | simplbi 274 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-grp 13135 | 
| This theorem is referenced by: grpcl 13140 grpass 13141 grpideu 13143 grpmndd 13145 grpplusf 13147 grpplusfo 13148 grpsgrp 13157 dfgrp2 13159 grpidcl 13161 grplid 13163 grprid 13164 dfgrp3m 13231 mulgaddcom 13276 mulginvcom 13277 mulgz 13280 mulgneg2 13286 mulgass 13289 issubg3 13322 grpissubg 13324 0subg 13329 ghmex 13385 0ghm 13388 isabl2 13424 | 
| Copyright terms: Public domain | W3C validator |