ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpmnd Unicode version

Theorem grpmnd 13535
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
grpmnd  |-  ( G  e.  Grp  ->  G  e.  Mnd )

Proof of Theorem grpmnd
Dummy variables  m  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2229 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
41, 2, 3isgrp 13534 . 2  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  ( Base `  G
) E. m  e.  ( Base `  G
) ( m ( +g  `  G ) a )  =  ( 0g `  G ) ) )
54simplbi 274 1  |-  ( G  e.  Grp  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Mndcmnd 13444   Grpcgrp 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-grp 13531
This theorem is referenced by:  grpcl  13536  grpass  13537  grpideu  13539  grpmndd  13541  grpplusf  13543  grpplusfo  13544  grpsgrp  13553  dfgrp2  13555  grpidcl  13557  grplid  13559  grprid  13560  dfgrp3m  13627  prdsgrpd  13637  prdsinvgd  13638  mulgaddcom  13678  mulginvcom  13679  mulgz  13682  mulgneg2  13688  mulgass  13691  issubg3  13724  grpissubg  13726  0subg  13731  ghmex  13787  0ghm  13790  isabl2  13826
  Copyright terms: Public domain W3C validator