ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitsubm Unicode version

Theorem unitsubm 13293
Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
unitsubm.1  |-  U  =  (Unit `  R )
unitsubm.2  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
unitsubm  |-  ( R  e.  Ring  ->  U  e.  (SubMnd `  M )
)

Proof of Theorem unitsubm
StepHypRef Expression
1 eqidd 2178 . . 3  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
2 unitsubm.1 . . . 4  |-  U  =  (Unit `  R )
32a1i 9 . . 3  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
4 ringsrg 13229 . . 3  |-  ( R  e.  Ring  ->  R  e. SRing
)
51, 3, 4unitssd 13283 . 2  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
6 eqid 2177 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
72, 61unit 13281 . 2  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  U )
8 unitsubm.2 . . . . 5  |-  M  =  (mulGrp `  R )
98oveq1i 5887 . . . 4  |-  ( Ms  U )  =  ( (mulGrp `  R )s  U )
102, 9unitgrp 13290 . . 3  |-  ( R  e.  Ring  ->  ( Ms  U )  e.  Grp )
1110grpmndd 12894 . 2  |-  ( R  e.  Ring  ->  ( Ms  U )  e.  Mnd )
128ringmgp 13190 . . . 4  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
13 eqid 2177 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
14 eqid 2177 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
15 eqid 2177 . . . . 5  |-  ( Ms  U )  =  ( Ms  U )
1613, 14, 15issubm2 12869 . . . 4  |-  ( M  e.  Mnd  ->  ( U  e.  (SubMnd `  M
)  <->  ( U  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  U  /\  ( Ms  U )  e.  Mnd ) ) )
1712, 16syl 14 . . 3  |-  ( R  e.  Ring  ->  ( U  e.  (SubMnd `  M
)  <->  ( U  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  U  /\  ( Ms  U )  e.  Mnd ) ) )
18 eqid 2177 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
198, 18mgpbasg 13141 . . . . 5  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
2019sseq2d 3187 . . . 4  |-  ( R  e.  Ring  ->  ( U 
C_  ( Base `  R
)  <->  U  C_  ( Base `  M ) ) )
218, 6ringidvalg 13149 . . . . 5  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
2221eleq1d 2246 . . . 4  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  U  <->  ( 0g `  M )  e.  U
) )
2320, 223anbi12d 1313 . . 3  |-  ( R  e.  Ring  ->  ( ( U  C_  ( Base `  R )  /\  ( 1r `  R )  e.  U  /\  ( Ms  U )  e.  Mnd )  <->  ( U  C_  ( Base `  M )  /\  ( 0g `  M )  e.  U  /\  ( Ms  U )  e.  Mnd )
) )
2417, 23bitr4d 191 . 2  |-  ( R  e.  Ring  ->  ( U  e.  (SubMnd `  M
)  <->  ( U  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  U  /\  ( Ms  U )  e.  Mnd ) ) )
255, 7, 11, 24mpbir3and 1180 1  |-  ( R  e.  Ring  ->  U  e.  (SubMnd `  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    C_ wss 3131   ` cfv 5218  (class class class)co 5877   Basecbs 12464   ↾s cress 12465   0gc0g 12710   Mndcmnd 12822  SubMndcsubmnd 12855  mulGrpcmgp 13135   1rcur 13147   Ringcrg 13184  Unitcui 13261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-tpos 6248  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-submnd 12857  df-grp 12885  df-minusg 12886  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-oppr 13245  df-dvdsr 13263  df-unit 13264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator