ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0 Unicode version

Theorem gt0ne0 8414
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
gt0ne0  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )

Proof of Theorem gt0ne0
StepHypRef Expression
1 0red 7988 . 2  |-  ( A  e.  RR  ->  0  e.  RR )
2 ltne 8072 . 2  |-  ( ( 0  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
31, 2sylan 283 1  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160    =/= wne 2360   class class class wbr 4018   RRcr 7840   0cc0 7841    < clt 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938  ax-rnegex 7950  ax-pre-ltirr 7953
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-pnf 8024  df-mnf 8025  df-ltxr 8027
This theorem is referenced by:  elnnz  9293  rpne0  9699
  Copyright terms: Public domain W3C validator