ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrdi Unicode version

Theorem lelttrdi 8573
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
Hypotheses
Ref Expression
lelttrdi.r  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
)
lelttrdi.l  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
lelttrdi  |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )

Proof of Theorem lelttrdi
StepHypRef Expression
1 lelttrdi.r . . . . 5  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
)
21simp1d 1033 . . . 4  |-  ( ph  ->  A  e.  RR )
32adantr 276 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  e.  RR )
41simp2d 1034 . . . 4  |-  ( ph  ->  B  e.  RR )
54adantr 276 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  e.  RR )
61simp3d 1035 . . . 4  |-  ( ph  ->  C  e.  RR )
76adantr 276 . . 3  |-  ( (
ph  /\  A  <  B )  ->  C  e.  RR )
8 simpr 110 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
9 lelttrdi.l . . . 4  |-  ( ph  ->  B  <_  C )
109adantr 276 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  <_  C )
113, 5, 7, 8, 10ltletrd 8570 . 2  |-  ( (
ph  /\  A  <  B )  ->  A  <  C )
1211ex 115 1  |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    e. wcel 2200   class class class wbr 4083   RRcr 7998    < clt 8181    <_ cle 8182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltwlin 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187
This theorem is referenced by:  difgtsumgt  9516  subfzo0  10448
  Copyright terms: Public domain W3C validator