ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrdi Unicode version

Theorem lelttrdi 8055
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
Hypotheses
Ref Expression
lelttrdi.r  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
)
lelttrdi.l  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
lelttrdi  |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )

Proof of Theorem lelttrdi
StepHypRef Expression
1 lelttrdi.r . . . . 5  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
)
21simp1d 961 . . . 4  |-  ( ph  ->  A  e.  RR )
32adantr 272 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  e.  RR )
41simp2d 962 . . . 4  |-  ( ph  ->  B  e.  RR )
54adantr 272 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  e.  RR )
61simp3d 963 . . . 4  |-  ( ph  ->  C  e.  RR )
76adantr 272 . . 3  |-  ( (
ph  /\  A  <  B )  ->  C  e.  RR )
8 simpr 109 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
9 lelttrdi.l . . . 4  |-  ( ph  ->  B  <_  C )
109adantr 272 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  <_  C )
113, 5, 7, 8, 10ltletrd 8052 . 2  |-  ( (
ph  /\  A  <  B )  ->  A  <  C )
1211ex 114 1  |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 930    e. wcel 1448   class class class wbr 3875   RRcr 7499    < clt 7672    <_ cle 7673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-pre-ltwlin 7608
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-xp 4483  df-cnv 4485  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678
This theorem is referenced by:  subfzo0  9860
  Copyright terms: Public domain W3C validator