ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrdi Unicode version

Theorem lelttrdi 8324
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
Hypotheses
Ref Expression
lelttrdi.r  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
)
lelttrdi.l  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
lelttrdi  |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )

Proof of Theorem lelttrdi
StepHypRef Expression
1 lelttrdi.r . . . . 5  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
)
21simp1d 999 . . . 4  |-  ( ph  ->  A  e.  RR )
32adantr 274 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  e.  RR )
41simp2d 1000 . . . 4  |-  ( ph  ->  B  e.  RR )
54adantr 274 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  e.  RR )
61simp3d 1001 . . . 4  |-  ( ph  ->  C  e.  RR )
76adantr 274 . . 3  |-  ( (
ph  /\  A  <  B )  ->  C  e.  RR )
8 simpr 109 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
9 lelttrdi.l . . . 4  |-  ( ph  ->  B  <_  C )
109adantr 274 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  <_  C )
113, 5, 7, 8, 10ltletrd 8321 . 2  |-  ( (
ph  /\  A  <  B )  ->  A  <  C )
1211ex 114 1  |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    e. wcel 2136   class class class wbr 3982   RRcr 7752    < clt 7933    <_ cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltwlin 7866
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939
This theorem is referenced by:  difgtsumgt  9260  subfzo0  10177
  Copyright terms: Public domain W3C validator