ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrdi Unicode version

Theorem lelttrdi 8445
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
Hypotheses
Ref Expression
lelttrdi.r  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
)
lelttrdi.l  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
lelttrdi  |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )

Proof of Theorem lelttrdi
StepHypRef Expression
1 lelttrdi.r . . . . 5  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
)
21simp1d 1011 . . . 4  |-  ( ph  ->  A  e.  RR )
32adantr 276 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  e.  RR )
41simp2d 1012 . . . 4  |-  ( ph  ->  B  e.  RR )
54adantr 276 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  e.  RR )
61simp3d 1013 . . . 4  |-  ( ph  ->  C  e.  RR )
76adantr 276 . . 3  |-  ( (
ph  /\  A  <  B )  ->  C  e.  RR )
8 simpr 110 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
9 lelttrdi.l . . . 4  |-  ( ph  ->  B  <_  C )
109adantr 276 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  <_  C )
113, 5, 7, 8, 10ltletrd 8442 . 2  |-  ( (
ph  /\  A  <  B )  ->  A  <  C )
1211ex 115 1  |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2164   class class class wbr 4029   RRcr 7871    < clt 8054    <_ cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltwlin 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by:  difgtsumgt  9386  subfzo0  10309
  Copyright terms: Public domain W3C validator