Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imaeq2i | GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq2 4947 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 “ cima 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-cnv 4617 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 |
This theorem is referenced by: cnvimarndm 4973 dmco 5117 fnimapr 5554 ssimaex 5555 imauni 5738 isoini2 5796 uniqs 6568 fiintim 6903 fidcenumlemrks 6927 fidcenumlemr 6929 nn0supp 9176 ennnfonelem1 12351 ennnfonelemhf1o 12357 retopbas 13278 |
Copyright terms: Public domain | W3C validator |