ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuin Unicode version

Theorem djuin 6810
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuin  |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)

Proof of Theorem djuin
StepHypRef Expression
1 incom 3193 . 2  |-  ( (inr " B )  i^i  (inl " A ) )  =  ( (inl " A
)  i^i  (inr " B
) )
2 imassrn 4798 . . . 4  |-  (inr " B )  C_  ran inr
3 djurf1o 6805 . . . . 5  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
4 f1of 5266 . . . . 5  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V --> ( { 1o }  X.  _V ) )
5 frn 5182 . . . . 5  |-  (inr : _V
--> ( { 1o }  X.  _V )  ->  ran inr  C_  ( { 1o }  X.  _V ) )
63, 4, 5mp2b 8 . . . 4  |-  ran inr  C_  ( { 1o }  X.  _V )
72, 6sstri 3035 . . 3  |-  (inr " B )  C_  ( { 1o }  X.  _V )
8 incom 3193 . . . 4  |-  ( (inl " A )  i^i  ( { 1o }  X.  _V ) )  =  ( ( { 1o }  X.  _V )  i^i  (inl " A ) )
9 imassrn 4798 . . . . . 6  |-  (inl " A )  C_  ran inl
10 djulf1o 6804 . . . . . . 7  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
11 f1of 5266 . . . . . . 7  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V --> ( {
(/) }  X.  _V )
)
12 frn 5182 . . . . . . 7  |-  (inl : _V
--> ( { (/) }  X.  _V )  ->  ran inl  C_  ( { (/) }  X.  _V ) )
1310, 11, 12mp2b 8 . . . . . 6  |-  ran inl  C_  ( { (/) }  X.  _V )
149, 13sstri 3035 . . . . 5  |-  (inl " A )  C_  ( { (/) }  X.  _V )
15 1n0 6211 . . . . . . 7  |-  1o  =/=  (/)
1615necomi 2341 . . . . . 6  |-  (/)  =/=  1o
17 disjsn2 3509 . . . . . 6  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
18 xpdisj1 4868 . . . . . 6  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  _V )  i^i  ( { 1o }  X.  _V ) )  =  (/) )
1916, 17, 18mp2b 8 . . . . 5  |-  ( ( { (/) }  X.  _V )  i^i  ( { 1o }  X.  _V ) )  =  (/)
20 ssdisj 3343 . . . . 5  |-  ( ( (inl " A ) 
C_  ( { (/) }  X.  _V )  /\  ( ( { (/) }  X.  _V )  i^i  ( { 1o }  X.  _V ) )  =  (/) )  ->  ( (inl " A )  i^i  ( { 1o }  X.  _V ) )  =  (/) )
2114, 19, 20mp2an 418 . . . 4  |-  ( (inl " A )  i^i  ( { 1o }  X.  _V ) )  =  (/)
228, 21eqtr3i 2111 . . 3  |-  ( ( { 1o }  X.  _V )  i^i  (inl " A ) )  =  (/)
23 ssdisj 3343 . . 3  |-  ( ( (inr " B ) 
C_  ( { 1o }  X.  _V )  /\  ( ( { 1o }  X.  _V )  i^i  (inl " A ) )  =  (/) )  -> 
( (inr " B
)  i^i  (inl " A
) )  =  (/) )
247, 22, 23mp2an 418 . 2  |-  ( (inr " B )  i^i  (inl " A ) )  =  (/)
251, 24eqtr3i 2111 1  |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1290    =/= wne 2256   _Vcvv 2620    i^i cin 2999    C_ wss 3000   (/)c0 3287   {csn 3450    X. cxp 4450   ran crn 4453   "cima 4455   -->wf 5024   -1-1-onto->wf1o 5027   1oc1o 6188  inlcinl 6791  inrcinr 6792
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-1st 5925  df-2nd 5926  df-1o 6195  df-inl 6793  df-inr 6794
This theorem is referenced by:  caseinl  6836  dju1p1e2  6884
  Copyright terms: Public domain W3C validator