ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuin Unicode version

Theorem djuin 7029
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
Assertion
Ref Expression
djuin  |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)

Proof of Theorem djuin
StepHypRef Expression
1 df-ima 4617 . . 3  |-  (inl " A )  =  ran  (inl  |`  A )
2 df-ima 4617 . . 3  |-  (inr " B )  =  ran  (inr  |`  B )
31, 2ineq12i 3321 . 2  |-  ( (inl " A )  i^i  (inr " B ) )  =  ( ran  (inl  |`  A )  i^i  ran  (inr  |`  B ) )
4 djuinr 7028 . 2  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)
53, 4eqtri 2186 1  |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    i^i cin 3115   (/)c0 3409   ran crn 4605    |` cres 4606   "cima 4607  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-inl 7012  df-inr 7013
This theorem is referenced by:  caseinl  7056  caseinr  7057  endjusym  7061  ctssdccl  7076  dju1p1e2  7153  endjudisj  7166  djuen  7167
  Copyright terms: Public domain W3C validator