ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resseqnbasd Unicode version

Theorem resseqnbasd 12776
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r  |-  R  =  ( Ws  A )
resseqnbas.e  |-  C  =  ( E `  W
)
resseqnbasd.f  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
resseqnbas.n  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
resseqnbasd.w  |-  ( ph  ->  W  e.  X )
resseqnbasd.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
resseqnbasd  |-  ( ph  ->  C  =  ( E `
 R ) )

Proof of Theorem resseqnbasd
StepHypRef Expression
1 resseqnbas.e . 2  |-  C  =  ( E `  W
)
2 resseqnbas.r . . . . 5  |-  R  =  ( Ws  A )
3 resseqnbasd.w . . . . . 6  |-  ( ph  ->  W  e.  X )
4 resseqnbasd.a . . . . . 6  |-  ( ph  ->  A  e.  V )
5 ressvalsets 12767 . . . . . 6  |-  ( ( W  e.  X  /\  A  e.  V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
63, 4, 5syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
72, 6eqtrid 2241 . . . 4  |-  ( ph  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
87fveq2d 5565 . . 3  |-  ( ph  ->  ( E `  R
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
9 inex1g 4170 . . . . 5  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
104, 9syl 14 . . . 4  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
11 resseqnbasd.f . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
12 resseqnbas.n . . . . 5  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
13 basendxnn 12759 . . . . 5  |-  ( Base `  ndx )  e.  NN
1411, 12, 13setsslnid 12755 . . . 4  |-  ( ( W  e.  X  /\  ( A  i^i  ( Base `  W ) )  e.  _V )  -> 
( E `  W
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
153, 10, 14syl2anc 411 . . 3  |-  ( ph  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
168, 15eqtr4d 2232 . 2  |-  ( ph  ->  ( E `  R
)  =  ( E `
 W ) )
171, 16eqtr4id 2248 1  |-  ( ph  ->  C  =  ( E `
 R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763    i^i cin 3156   <.cop 3626   ` cfv 5259  (class class class)co 5925   NNcn 9007   ndxcnx 12700   sSet csts 12701  Slot cslot 12702   Basecbs 12703   ↾s cress 12704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711
This theorem is referenced by:  ressplusgd  12831  ressmulrg  12847  ressscag  12885  ressvscag  12886  ressipg  12887
  Copyright terms: Public domain W3C validator