ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resseqnbasd Unicode version

Theorem resseqnbasd 12691
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r  |-  R  =  ( Ws  A )
resseqnbas.e  |-  C  =  ( E `  W
)
resseqnbasd.f  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
resseqnbas.n  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
resseqnbasd.w  |-  ( ph  ->  W  e.  X )
resseqnbasd.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
resseqnbasd  |-  ( ph  ->  C  =  ( E `
 R ) )

Proof of Theorem resseqnbasd
StepHypRef Expression
1 resseqnbas.e . 2  |-  C  =  ( E `  W
)
2 resseqnbas.r . . . . 5  |-  R  =  ( Ws  A )
3 resseqnbasd.w . . . . . 6  |-  ( ph  ->  W  e.  X )
4 resseqnbasd.a . . . . . 6  |-  ( ph  ->  A  e.  V )
5 ressvalsets 12682 . . . . . 6  |-  ( ( W  e.  X  /\  A  e.  V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
63, 4, 5syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
72, 6eqtrid 2238 . . . 4  |-  ( ph  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
87fveq2d 5558 . . 3  |-  ( ph  ->  ( E `  R
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
9 inex1g 4165 . . . . 5  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
104, 9syl 14 . . . 4  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
11 resseqnbasd.f . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
12 resseqnbas.n . . . . 5  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
13 basendxnn 12674 . . . . 5  |-  ( Base `  ndx )  e.  NN
1411, 12, 13setsslnid 12670 . . . 4  |-  ( ( W  e.  X  /\  ( A  i^i  ( Base `  W ) )  e.  _V )  -> 
( E `  W
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
153, 10, 14syl2anc 411 . . 3  |-  ( ph  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
168, 15eqtr4d 2229 . 2  |-  ( ph  ->  ( E `  R
)  =  ( E `
 W ) )
171, 16eqtr4id 2245 1  |-  ( ph  ->  C  =  ( E `
 R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760    i^i cin 3152   <.cop 3621   ` cfv 5254  (class class class)co 5918   NNcn 8982   ndxcnx 12615   sSet csts 12616  Slot cslot 12617   Basecbs 12618   ↾s cress 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626
This theorem is referenced by:  ressplusgd  12746  ressmulrg  12762  ressscag  12800  ressvscag  12801  ressipg  12802
  Copyright terms: Public domain W3C validator