| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resseqnbasd | Unicode version | ||
| Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| Ref | Expression |
|---|---|
| resseqnbas.r |
|
| resseqnbas.e |
|
| resseqnbasd.f |
|
| resseqnbas.n |
|
| resseqnbasd.w |
|
| resseqnbasd.a |
|
| Ref | Expression |
|---|---|
| resseqnbasd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.e |
. 2
| |
| 2 | resseqnbas.r |
. . . . 5
| |
| 3 | resseqnbasd.w |
. . . . . 6
| |
| 4 | resseqnbasd.a |
. . . . . 6
| |
| 5 | ressvalsets 13083 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . 5
|
| 7 | 2, 6 | eqtrid 2274 |
. . . 4
|
| 8 | 7 | fveq2d 5627 |
. . 3
|
| 9 | inex1g 4219 |
. . . . 5
| |
| 10 | 4, 9 | syl 14 |
. . . 4
|
| 11 | resseqnbasd.f |
. . . . 5
| |
| 12 | resseqnbas.n |
. . . . 5
| |
| 13 | basendxnn 13074 |
. . . . 5
| |
| 14 | 11, 12, 13 | setsslnid 13070 |
. . . 4
|
| 15 | 3, 10, 14 | syl2anc 411 |
. . 3
|
| 16 | 8, 15 | eqtr4d 2265 |
. 2
|
| 17 | 1, 16 | eqtr4id 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 |
| This theorem is referenced by: ressplusgd 13148 ressmulrg 13164 ressscag 13202 ressvscag 13203 ressipg 13204 |
| Copyright terms: Public domain | W3C validator |