ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resseqnbasd Unicode version

Theorem resseqnbasd 12588
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r  |-  R  =  ( Ws  A )
resseqnbas.e  |-  C  =  ( E `  W
)
resseqnbasd.f  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
resseqnbas.n  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
resseqnbasd.w  |-  ( ph  ->  W  e.  X )
resseqnbasd.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
resseqnbasd  |-  ( ph  ->  C  =  ( E `
 R ) )

Proof of Theorem resseqnbasd
StepHypRef Expression
1 resseqnbas.e . 2  |-  C  =  ( E `  W
)
2 resseqnbas.r . . . . 5  |-  R  =  ( Ws  A )
3 resseqnbasd.w . . . . . 6  |-  ( ph  ->  W  e.  X )
4 resseqnbasd.a . . . . . 6  |-  ( ph  ->  A  e.  V )
5 ressvalsets 12579 . . . . . 6  |-  ( ( W  e.  X  /\  A  e.  V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
63, 4, 5syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
72, 6eqtrid 2234 . . . 4  |-  ( ph  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
87fveq2d 5538 . . 3  |-  ( ph  ->  ( E `  R
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
9 inex1g 4154 . . . . 5  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
104, 9syl 14 . . . 4  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
11 resseqnbasd.f . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
12 resseqnbas.n . . . . 5  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
13 basendxnn 12571 . . . . 5  |-  ( Base `  ndx )  e.  NN
1411, 12, 13setsslnid 12567 . . . 4  |-  ( ( W  e.  X  /\  ( A  i^i  ( Base `  W ) )  e.  _V )  -> 
( E `  W
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
153, 10, 14syl2anc 411 . . 3  |-  ( ph  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
168, 15eqtr4d 2225 . 2  |-  ( ph  ->  ( E `  R
)  =  ( E `
 W ) )
171, 16eqtr4id 2241 1  |-  ( ph  ->  C  =  ( E `
 R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    =/= wne 2360   _Vcvv 2752    i^i cin 3143   <.cop 3610   ` cfv 5235  (class class class)co 5897   NNcn 8950   ndxcnx 12512   sSet csts 12513  Slot cslot 12514   Basecbs 12515   ↾s cress 12516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-inn 8951  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523
This theorem is referenced by:  ressplusgd  12643  ressmulrg  12659  ressscag  12697  ressvscag  12698  ressipg  12699
  Copyright terms: Public domain W3C validator