| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resseqnbasd | Unicode version | ||
| Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| Ref | Expression |
|---|---|
| resseqnbas.r |
|
| resseqnbas.e |
|
| resseqnbasd.f |
|
| resseqnbas.n |
|
| resseqnbasd.w |
|
| resseqnbasd.a |
|
| Ref | Expression |
|---|---|
| resseqnbasd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.e |
. 2
| |
| 2 | resseqnbas.r |
. . . . 5
| |
| 3 | resseqnbasd.w |
. . . . . 6
| |
| 4 | resseqnbasd.a |
. . . . . 6
| |
| 5 | ressvalsets 12940 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . 5
|
| 7 | 2, 6 | eqtrid 2251 |
. . . 4
|
| 8 | 7 | fveq2d 5587 |
. . 3
|
| 9 | inex1g 4184 |
. . . . 5
| |
| 10 | 4, 9 | syl 14 |
. . . 4
|
| 11 | resseqnbasd.f |
. . . . 5
| |
| 12 | resseqnbas.n |
. . . . 5
| |
| 13 | basendxnn 12932 |
. . . . 5
| |
| 14 | 11, 12, 13 | setsslnid 12928 |
. . . 4
|
| 15 | 3, 10, 14 | syl2anc 411 |
. . 3
|
| 16 | 8, 15 | eqtr4d 2242 |
. 2
|
| 17 | 1, 16 | eqtr4id 2258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-inn 9044 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 |
| This theorem is referenced by: ressplusgd 13005 ressmulrg 13021 ressscag 13059 ressvscag 13060 ressipg 13061 |
| Copyright terms: Public domain | W3C validator |