ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resseqnbasd Unicode version

Theorem resseqnbasd 12949
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r  |-  R  =  ( Ws  A )
resseqnbas.e  |-  C  =  ( E `  W
)
resseqnbasd.f  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
resseqnbas.n  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
resseqnbasd.w  |-  ( ph  ->  W  e.  X )
resseqnbasd.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
resseqnbasd  |-  ( ph  ->  C  =  ( E `
 R ) )

Proof of Theorem resseqnbasd
StepHypRef Expression
1 resseqnbas.e . 2  |-  C  =  ( E `  W
)
2 resseqnbas.r . . . . 5  |-  R  =  ( Ws  A )
3 resseqnbasd.w . . . . . 6  |-  ( ph  ->  W  e.  X )
4 resseqnbasd.a . . . . . 6  |-  ( ph  ->  A  e.  V )
5 ressvalsets 12940 . . . . . 6  |-  ( ( W  e.  X  /\  A  e.  V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
63, 4, 5syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
72, 6eqtrid 2251 . . . 4  |-  ( ph  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
87fveq2d 5587 . . 3  |-  ( ph  ->  ( E `  R
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
9 inex1g 4184 . . . . 5  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
104, 9syl 14 . . . 4  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
11 resseqnbasd.f . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
12 resseqnbas.n . . . . 5  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
13 basendxnn 12932 . . . . 5  |-  ( Base `  ndx )  e.  NN
1411, 12, 13setsslnid 12928 . . . 4  |-  ( ( W  e.  X  /\  ( A  i^i  ( Base `  W ) )  e.  _V )  -> 
( E `  W
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
153, 10, 14syl2anc 411 . . 3  |-  ( ph  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
168, 15eqtr4d 2242 . 2  |-  ( ph  ->  ( E `  R
)  =  ( E `
 W ) )
171, 16eqtr4id 2258 1  |-  ( ph  ->  C  =  ( E `
 R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    =/= wne 2377   _Vcvv 2773    i^i cin 3166   <.cop 3637   ` cfv 5276  (class class class)co 5951   NNcn 9043   ndxcnx 12873   sSet csts 12874  Slot cslot 12875   Basecbs 12876   ↾s cress 12877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-inn 9044  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884
This theorem is referenced by:  ressplusgd  13005  ressmulrg  13021  ressscag  13059  ressvscag  13060  ressipg  13061
  Copyright terms: Public domain W3C validator