| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressinbasd | Unicode version | ||
| Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressidbasd.1 |
|
| ressidbasd.a |
|
| ressidbasd.w |
|
| Ref | Expression |
|---|---|
| ressinbasd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressidbasd.1 |
. . . . . . 7
| |
| 2 | inidm 3413 |
. . . . . . . 8
| |
| 3 | 1 | ineq2d 3405 |
. . . . . . . 8
|
| 4 | 2, 3 | eqtr3id 2276 |
. . . . . . 7
|
| 5 | 1, 4 | eqtr3d 2264 |
. . . . . 6
|
| 6 | 5 | ineq2d 3405 |
. . . . 5
|
| 7 | inass 3414 |
. . . . 5
| |
| 8 | 6, 7 | eqtr4di 2280 |
. . . 4
|
| 9 | 8 | opeq2d 3864 |
. . 3
|
| 10 | 9 | oveq2d 6017 |
. 2
|
| 11 | ressidbasd.w |
. . 3
| |
| 12 | ressidbasd.a |
. . 3
| |
| 13 | ressvalsets 13097 |
. . 3
| |
| 14 | 11, 12, 13 | syl2anc 411 |
. 2
|
| 15 | inex1g 4220 |
. . . 4
| |
| 16 | 12, 15 | syl 14 |
. . 3
|
| 17 | ressvalsets 13097 |
. . 3
| |
| 18 | 11, 16, 17 | syl2anc 411 |
. 2
|
| 19 | 10, 14, 18 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |