ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressinbasd Unicode version

Theorem ressinbasd 13107
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressidbasd.1  |-  ( ph  ->  B  =  ( Base `  W ) )
ressidbasd.a  |-  ( ph  ->  A  e.  X )
ressidbasd.w  |-  ( ph  ->  W  e.  V )
Assertion
Ref Expression
ressinbasd  |-  ( ph  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )

Proof of Theorem ressinbasd
StepHypRef Expression
1 ressidbasd.1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  W ) )
2 inidm 3413 . . . . . . . 8  |-  ( B  i^i  B )  =  B
31ineq2d 3405 . . . . . . . 8  |-  ( ph  ->  ( B  i^i  B
)  =  ( B  i^i  ( Base `  W
) ) )
42, 3eqtr3id 2276 . . . . . . 7  |-  ( ph  ->  B  =  ( B  i^i  ( Base `  W
) ) )
51, 4eqtr3d 2264 . . . . . 6  |-  ( ph  ->  ( Base `  W
)  =  ( B  i^i  ( Base `  W
) ) )
65ineq2d 3405 . . . . 5  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  =  ( A  i^i  ( B  i^i  ( Base `  W ) ) ) )
7 inass 3414 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( A  i^i  ( B  i^i  ( Base `  W
) ) )
86, 7eqtr4di 2280 . . . 4  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  =  ( ( A  i^i  B )  i^i  ( Base `  W
) ) )
98opeq2d 3864 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >.  =  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W ) ) >.
)
109oveq2d 6017 . 2  |-  ( ph  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
11 ressidbasd.w . . 3  |-  ( ph  ->  W  e.  V )
12 ressidbasd.a . . 3  |-  ( ph  ->  A  e.  X )
13 ressvalsets 13097 . . 3  |-  ( ( W  e.  V  /\  A  e.  X )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
1411, 12, 13syl2anc 411 . 2  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
15 inex1g 4220 . . . 4  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
1612, 15syl 14 . . 3  |-  ( ph  ->  ( A  i^i  B
)  e.  _V )
17 ressvalsets 13097 . . 3  |-  ( ( W  e.  V  /\  ( A  i^i  B )  e.  _V )  -> 
( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
1811, 16, 17syl2anc 411 . 2  |-  ( ph  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
1910, 14, 183eqtr4d 2272 1  |-  ( ph  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196   <.cop 3669   ` cfv 5318  (class class class)co 6001   ndxcnx 13029   sSet csts 13030   Basecbs 13032   ↾s cress 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator