ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressinbasd Unicode version

Theorem ressinbasd 12695
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressidbasd.1  |-  ( ph  ->  B  =  ( Base `  W ) )
ressidbasd.a  |-  ( ph  ->  A  e.  X )
ressidbasd.w  |-  ( ph  ->  W  e.  V )
Assertion
Ref Expression
ressinbasd  |-  ( ph  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )

Proof of Theorem ressinbasd
StepHypRef Expression
1 ressidbasd.1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  W ) )
2 inidm 3369 . . . . . . . 8  |-  ( B  i^i  B )  =  B
31ineq2d 3361 . . . . . . . 8  |-  ( ph  ->  ( B  i^i  B
)  =  ( B  i^i  ( Base `  W
) ) )
42, 3eqtr3id 2240 . . . . . . 7  |-  ( ph  ->  B  =  ( B  i^i  ( Base `  W
) ) )
51, 4eqtr3d 2228 . . . . . 6  |-  ( ph  ->  ( Base `  W
)  =  ( B  i^i  ( Base `  W
) ) )
65ineq2d 3361 . . . . 5  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  =  ( A  i^i  ( B  i^i  ( Base `  W ) ) ) )
7 inass 3370 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( A  i^i  ( B  i^i  ( Base `  W
) ) )
86, 7eqtr4di 2244 . . . 4  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  =  ( ( A  i^i  B )  i^i  ( Base `  W
) ) )
98opeq2d 3812 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >.  =  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W ) ) >.
)
109oveq2d 5935 . 2  |-  ( ph  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
11 ressidbasd.w . . 3  |-  ( ph  ->  W  e.  V )
12 ressidbasd.a . . 3  |-  ( ph  ->  A  e.  X )
13 ressvalsets 12685 . . 3  |-  ( ( W  e.  V  /\  A  e.  X )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
1411, 12, 13syl2anc 411 . 2  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
15 inex1g 4166 . . . 4  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
1612, 15syl 14 . . 3  |-  ( ph  ->  ( A  i^i  B
)  e.  _V )
17 ressvalsets 12685 . . 3  |-  ( ( W  e.  V  /\  ( A  i^i  B )  e.  _V )  -> 
( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
1811, 16, 17syl2anc 411 . 2  |-  ( ph  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
1910, 14, 183eqtr4d 2236 1  |-  ( ph  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3153   <.cop 3622   ` cfv 5255  (class class class)co 5919   ndxcnx 12618   sSet csts 12619   Basecbs 12621   ↾s cress 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator