ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressinbasd Unicode version

Theorem ressinbasd 12906
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressidbasd.1  |-  ( ph  ->  B  =  ( Base `  W ) )
ressidbasd.a  |-  ( ph  ->  A  e.  X )
ressidbasd.w  |-  ( ph  ->  W  e.  V )
Assertion
Ref Expression
ressinbasd  |-  ( ph  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )

Proof of Theorem ressinbasd
StepHypRef Expression
1 ressidbasd.1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  W ) )
2 inidm 3382 . . . . . . . 8  |-  ( B  i^i  B )  =  B
31ineq2d 3374 . . . . . . . 8  |-  ( ph  ->  ( B  i^i  B
)  =  ( B  i^i  ( Base `  W
) ) )
42, 3eqtr3id 2252 . . . . . . 7  |-  ( ph  ->  B  =  ( B  i^i  ( Base `  W
) ) )
51, 4eqtr3d 2240 . . . . . 6  |-  ( ph  ->  ( Base `  W
)  =  ( B  i^i  ( Base `  W
) ) )
65ineq2d 3374 . . . . 5  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  =  ( A  i^i  ( B  i^i  ( Base `  W ) ) ) )
7 inass 3383 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( A  i^i  ( B  i^i  ( Base `  W
) ) )
86, 7eqtr4di 2256 . . . 4  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  =  ( ( A  i^i  B )  i^i  ( Base `  W
) ) )
98opeq2d 3826 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >.  =  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W ) ) >.
)
109oveq2d 5960 . 2  |-  ( ph  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
11 ressidbasd.w . . 3  |-  ( ph  ->  W  e.  V )
12 ressidbasd.a . . 3  |-  ( ph  ->  A  e.  X )
13 ressvalsets 12896 . . 3  |-  ( ( W  e.  V  /\  A  e.  X )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
1411, 12, 13syl2anc 411 . 2  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
15 inex1g 4180 . . . 4  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
1612, 15syl 14 . . 3  |-  ( ph  ->  ( A  i^i  B
)  e.  _V )
17 ressvalsets 12896 . . 3  |-  ( ( W  e.  V  /\  ( A  i^i  B )  e.  _V )  -> 
( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
1811, 16, 17syl2anc 411 . 2  |-  ( ph  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
1910, 14, 183eqtr4d 2248 1  |-  ( ph  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165   <.cop 3636   ` cfv 5271  (class class class)co 5944   ndxcnx 12829   sSet csts 12830   Basecbs 12832   ↾s cress 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator