ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbasd Unicode version

Theorem ressbasd 13014
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
ressbasd.r  |-  ( ph  ->  R  =  ( Ws  A ) )
ressbasd.b  |-  ( ph  ->  B  =  ( Base `  W ) )
ressbasd.w  |-  ( ph  ->  W  e.  X )
ressbasd.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
ressbasd  |-  ( ph  ->  ( A  i^i  B
)  =  ( Base `  R ) )

Proof of Theorem ressbasd
StepHypRef Expression
1 ressbasd.w . . 3  |-  ( ph  ->  W  e.  X )
2 ressbasd.a . . . 4  |-  ( ph  ->  A  e.  V )
3 inex1g 4196 . . . 4  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
42, 3syl 14 . . 3  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
5 baseslid 13004 . . . 4  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
65setsslid 12998 . . 3  |-  ( ( W  e.  X  /\  ( A  i^i  ( Base `  W ) )  e.  _V )  -> 
( A  i^i  ( Base `  W ) )  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
) )
71, 4, 6syl2anc 411 . 2  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
) )
8 ressbasd.b . . 3  |-  ( ph  ->  B  =  ( Base `  W ) )
98ineq2d 3382 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  ( A  i^i  ( Base `  W
) ) )
10 ressbasd.r . . . 4  |-  ( ph  ->  R  =  ( Ws  A ) )
11 ressvalsets 13011 . . . . 5  |-  ( ( W  e.  X  /\  A  e.  V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
121, 2, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
1310, 12eqtrd 2240 . . 3  |-  ( ph  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
1413fveq2d 5603 . 2  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
157, 9, 143eqtr4d 2250 1  |-  ( ph  ->  ( A  i^i  B
)  =  ( Base `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173   <.cop 3646   ` cfv 5290  (class class class)co 5967   ndxcnx 12944   sSet csts 12945   Basecbs 12947   ↾s cress 12948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955
This theorem is referenced by:  ressbas2d  13015  ressbasssd  13016  ressbasid  13017  ressressg  13022  grpressid  13508  opprsubgg  13961  subrngpropd  14093  subrgpropd  14130  sralmod  14327  lidlbas  14355
  Copyright terms: Public domain W3C validator