ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbasd Unicode version

Theorem ressbasd 12529
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
ressbasd.r  |-  ( ph  ->  R  =  ( Ws  A ) )
ressbasd.b  |-  ( ph  ->  B  =  ( Base `  W ) )
ressbasd.w  |-  ( ph  ->  W  e.  X )
ressbasd.a  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
ressbasd  |-  ( ph  ->  ( A  i^i  B
)  =  ( Base `  R ) )

Proof of Theorem ressbasd
StepHypRef Expression
1 ressbasd.w . . 3  |-  ( ph  ->  W  e.  X )
2 ressbasd.a . . . 4  |-  ( ph  ->  A  e.  V )
3 inex1g 4141 . . . 4  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
42, 3syl 14 . . 3  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
5 baseslid 12521 . . . 4  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
65setsslid 12515 . . 3  |-  ( ( W  e.  X  /\  ( A  i^i  ( Base `  W ) )  e.  _V )  -> 
( A  i^i  ( Base `  W ) )  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
) )
71, 4, 6syl2anc 411 . 2  |-  ( ph  ->  ( A  i^i  ( Base `  W ) )  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
) )
8 ressbasd.b . . 3  |-  ( ph  ->  B  =  ( Base `  W ) )
98ineq2d 3338 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  ( A  i^i  ( Base `  W
) ) )
10 ressbasd.r . . . 4  |-  ( ph  ->  R  =  ( Ws  A ) )
11 ressvalsets 12526 . . . . 5  |-  ( ( W  e.  X  /\  A  e.  V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
121, 2, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
1310, 12eqtrd 2210 . . 3  |-  ( ph  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
1413fveq2d 5521 . 2  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) ) )
157, 9, 143eqtr4d 2220 1  |-  ( ph  ->  ( A  i^i  B
)  =  ( Base `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739    i^i cin 3130   <.cop 3597   ` cfv 5218  (class class class)co 5877   ndxcnx 12461   sSet csts 12462   Basecbs 12464   ↾s cress 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472
This theorem is referenced by:  ressbas2d  12530  ressbasssd  12531  ressressg  12536  grpressid  12936  subrgpropd  13374
  Copyright terms: Public domain W3C validator