ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infm Unicode version

Theorem infm 6861
Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
Assertion
Ref Expression
infm  |-  ( om  ~<_  A  ->  E. x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem infm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6706 . 2  |-  ( om  ~<_  A  ->  E. f 
f : om -1-1-> A
)
2 f1f 5387 . . . . 5  |-  ( f : om -1-1-> A  -> 
f : om --> A )
32adantl 275 . . . 4  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  -> 
f : om --> A )
4 peano1 4565 . . . . 5  |-  (/)  e.  om
54a1i 9 . . . 4  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  ->  (/) 
e.  om )
63, 5ffvelrnd 5615 . . 3  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  -> 
( f `  (/) )  e.  A )
7 elex2 2737 . . 3  |-  ( ( f `  (/) )  e.  A  ->  E. x  x  e.  A )
86, 7syl 14 . 2  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  ->  E. x  x  e.  A )
91, 8exlimddv 1885 1  |-  ( om  ~<_  A  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1479    e. wcel 2135   (/)c0 3404   class class class wbr 3976   omcom 4561   -->wf 5178   -1-1->wf1 5179   ` cfv 5182    ~<_ cdom 6696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fv 5190  df-dom 6699
This theorem is referenced by:  infn0  6862  inffiexmid  6863  inffinp1  12299  unbendc  12326
  Copyright terms: Public domain W3C validator