ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infm Unicode version

Theorem infm 6748
Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
Assertion
Ref Expression
infm  |-  ( om  ~<_  A  ->  E. x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem infm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6594 . 2  |-  ( om  ~<_  A  ->  E. f 
f : om -1-1-> A
)
2 f1f 5284 . . . . 5  |-  ( f : om -1-1-> A  -> 
f : om --> A )
32adantl 273 . . . 4  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  -> 
f : om --> A )
4 peano1 4466 . . . . 5  |-  (/)  e.  om
54a1i 9 . . . 4  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  ->  (/) 
e.  om )
63, 5ffvelrnd 5508 . . 3  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  -> 
( f `  (/) )  e.  A )
7 elex2 2671 . . 3  |-  ( ( f `  (/) )  e.  A  ->  E. x  x  e.  A )
86, 7syl 14 . 2  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  ->  E. x  x  e.  A )
91, 8exlimddv 1850 1  |-  ( om  ~<_  A  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1449    e. wcel 1461   (/)c0 3327   class class class wbr 3893   omcom 4462   -->wf 5075   -1-1->wf1 5076   ` cfv 5079    ~<_ cdom 6584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-id 4173  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fv 5087  df-dom 6587
This theorem is referenced by:  infn0  6749  inffiexmid  6750  inffinp1  11780
  Copyright terms: Public domain W3C validator