ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infm Unicode version

Theorem infm 6906
Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
Assertion
Ref Expression
infm  |-  ( om  ~<_  A  ->  E. x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem infm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6751 . 2  |-  ( om  ~<_  A  ->  E. f 
f : om -1-1-> A
)
2 f1f 5423 . . . . 5  |-  ( f : om -1-1-> A  -> 
f : om --> A )
32adantl 277 . . . 4  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  -> 
f : om --> A )
4 peano1 4595 . . . . 5  |-  (/)  e.  om
54a1i 9 . . . 4  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  ->  (/) 
e.  om )
63, 5ffvelcdmd 5654 . . 3  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  -> 
( f `  (/) )  e.  A )
7 elex2 2755 . . 3  |-  ( ( f `  (/) )  e.  A  ->  E. x  x  e.  A )
86, 7syl 14 . 2  |-  ( ( om  ~<_  A  /\  f : om -1-1-> A )  ->  E. x  x  e.  A )
91, 8exlimddv 1898 1  |-  ( om  ~<_  A  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492    e. wcel 2148   (/)c0 3424   class class class wbr 4005   omcom 4591   -->wf 5214   -1-1->wf1 5215   ` cfv 5218    ~<_ cdom 6741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fv 5226  df-dom 6744
This theorem is referenced by:  infn0  6907  inffiexmid  6908  inffinp1  12432  unbendc  12457
  Copyright terms: Public domain W3C validator