| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infm | Unicode version | ||
| Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| infm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6898 |
. 2
| |
| 2 | f1f 5531 |
. . . . 5
| |
| 3 | 2 | adantl 277 |
. . . 4
|
| 4 | peano1 4686 |
. . . . 5
| |
| 5 | 4 | a1i 9 |
. . . 4
|
| 6 | 3, 5 | ffvelcdmd 5771 |
. . 3
|
| 7 | elex2 2816 |
. . 3
| |
| 8 | 6, 7 | syl 14 |
. 2
|
| 9 | 1, 8 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fv 5326 df-dom 6889 |
| This theorem is referenced by: infn0 7067 inffiexmid 7068 inffinp1 13000 unbendc 13025 |
| Copyright terms: Public domain | W3C validator |