ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpfn GIF version

Theorem ixpfn 6763
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
ixpfn (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem ixpfn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq1 5346 . 2 (𝑓 = 𝐹 → (𝑓 Fn 𝐴𝐹 Fn 𝐴))
2 elixp2 6761 . . 3 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 ∈ V ∧ 𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
32simp2bi 1015 . 2 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
41, 3vtoclga 2830 1 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wral 2475  Vcvv 2763   Fn wfn 5253  cfv 5258  Xcixp 6757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ixp 6758
This theorem is referenced by:  ixpprc  6778  ixpssmap2g  6786  ixpssmapg  6787  xpsff1o  12968
  Copyright terms: Public domain W3C validator