ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpfn GIF version

Theorem ixpfn 6790
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
ixpfn (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem ixpfn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq1 5361 . 2 (𝑓 = 𝐹 → (𝑓 Fn 𝐴𝐹 Fn 𝐴))
2 elixp2 6788 . . 3 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 ∈ V ∧ 𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
32simp2bi 1015 . 2 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
41, 3vtoclga 2838 1 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wral 2483  Vcvv 2771   Fn wfn 5265  cfv 5270  Xcixp 6784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ixp 6785
This theorem is referenced by:  ixpprc  6805  ixpssmap2g  6813  ixpssmapg  6814  prdsbasfn  13055  xpsff1o  13123
  Copyright terms: Public domain W3C validator