| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixpfn | GIF version | ||
| Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| ixpfn | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5408 | . 2 ⊢ (𝑓 = 𝐹 → (𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) | |
| 2 | elixp2 6847 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 ∈ V ∧ 𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | |
| 3 | 2 | simp2bi 1037 | . 2 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) |
| 4 | 1, 3 | vtoclga 2867 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 Fn wfn 5312 ‘cfv 5317 Xcixp 6843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ixp 6844 |
| This theorem is referenced by: ixpprc 6864 ixpssmap2g 6872 ixpssmapg 6873 prdsbasfn 13309 xpsff1o 13377 |
| Copyright terms: Public domain | W3C validator |