ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelsr Unicode version

Theorem ltrelsr 7739
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelsr  |-  <R  C_  ( R.  X.  R. )

Proof of Theorem ltrelsr
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 7731 . 2  |-  <R  =  { <. x ,  y
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
2 opabssxp 4702 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }  C_  ( R.  X.  R. )
31, 2eqsstri 3189 1  |-  <R  C_  ( R.  X.  R. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148    C_ wss 3131   <.cop 3597   class class class wbr 4005   {copab 4065    X. cxp 4626  (class class class)co 5877   [cec 6535    +P. cpp 7294    <P cltp 7296    ~R cer 7297   R.cnr 7298    <R cltr 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144  df-opab 4067  df-xp 4634  df-ltr 7731
This theorem is referenced by:  gt0srpr  7749  recexgt0sr  7774  addgt0sr  7776  mulgt0sr  7779  caucvgsrlemcl  7790  caucvgsrlemasr  7791  caucvgsrlemfv  7792  map2psrprg  7806  suplocsrlemb  7807  suplocsrlempr  7808  suplocsrlem  7809  suplocsr  7810  ltresr  7840  axpre-ltirr  7883  axpre-lttrn  7885
  Copyright terms: Public domain W3C validator