ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelsr Unicode version

Theorem ltrelsr 7805
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelsr  |-  <R  C_  ( R.  X.  R. )

Proof of Theorem ltrelsr
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 7797 . 2  |-  <R  =  { <. x ,  y
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
2 opabssxp 4737 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }  C_  ( R.  X.  R. )
31, 2eqsstri 3215 1  |-  <R  C_  ( R.  X.  R. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167    C_ wss 3157   <.cop 3625   class class class wbr 4033   {copab 4093    X. cxp 4661  (class class class)co 5922   [cec 6590    +P. cpp 7360    <P cltp 7362    ~R cer 7363   R.cnr 7364    <R cltr 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-opab 4095  df-xp 4669  df-ltr 7797
This theorem is referenced by:  gt0srpr  7815  recexgt0sr  7840  addgt0sr  7842  mulgt0sr  7845  caucvgsrlemcl  7856  caucvgsrlemasr  7857  caucvgsrlemfv  7858  map2psrprg  7872  suplocsrlemb  7873  suplocsrlempr  7874  suplocsrlem  7875  suplocsr  7876  ltresr  7906  axpre-ltirr  7949  axpre-lttrn  7951
  Copyright terms: Public domain W3C validator