ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelsr Unicode version

Theorem ltrelsr 7345
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelsr  |-  <R  C_  ( R.  X.  R. )

Proof of Theorem ltrelsr
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 7337 . 2  |-  <R  =  { <. x ,  y
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
2 opabssxp 4525 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }  C_  ( R.  X.  R. )
31, 2eqsstri 3057 1  |-  <R  C_  ( R.  X.  R. )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1290   E.wex 1427    e. wcel 1439    C_ wss 3000   <.cop 3453   class class class wbr 3851   {copab 3904    X. cxp 4450  (class class class)co 5666   [cec 6304    +P. cpp 6913    <P cltp 6915    ~R cer 6916   R.cnr 6917    <R cltr 6923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-in 3006  df-ss 3013  df-opab 3906  df-xp 4458  df-ltr 7337
This theorem is referenced by:  gt0srpr  7355  recexgt0sr  7380  addgt0sr  7382  mulgt0sr  7384  caucvgsrlemcl  7395  caucvgsrlemasr  7396  caucvgsrlemfv  7397  ltresr  7437  axpre-ltirr  7478  axpre-lttrn  7480
  Copyright terms: Public domain W3C validator