ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelsr Unicode version

Theorem ltrelsr 7886
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelsr  |-  <R  C_  ( R.  X.  R. )

Proof of Theorem ltrelsr
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 7878 . 2  |-  <R  =  { <. x ,  y
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
2 opabssxp 4767 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }  C_  ( R.  X.  R. )
31, 2eqsstri 3233 1  |-  <R  C_  ( R.  X.  R. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178    C_ wss 3174   <.cop 3646   class class class wbr 4059   {copab 4120    X. cxp 4691  (class class class)co 5967   [cec 6641    +P. cpp 7441    <P cltp 7443    ~R cer 7444   R.cnr 7445    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187  df-opab 4122  df-xp 4699  df-ltr 7878
This theorem is referenced by:  gt0srpr  7896  recexgt0sr  7921  addgt0sr  7923  mulgt0sr  7926  caucvgsrlemcl  7937  caucvgsrlemasr  7938  caucvgsrlemfv  7939  map2psrprg  7953  suplocsrlemb  7954  suplocsrlempr  7955  suplocsrlem  7956  suplocsr  7957  ltresr  7987  axpre-ltirr  8030  axpre-lttrn  8032
  Copyright terms: Public domain W3C validator