ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelsr Unicode version

Theorem ltrelsr 7700
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelsr  |-  <R  C_  ( R.  X.  R. )

Proof of Theorem ltrelsr
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 7692 . 2  |-  <R  =  { <. x ,  y
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
2 opabssxp 4685 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }  C_  ( R.  X.  R. )
31, 2eqsstri 3179 1  |-  <R  C_  ( R.  X.  R. )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121   <.cop 3586   class class class wbr 3989   {copab 4049    X. cxp 4609  (class class class)co 5853   [cec 6511    +P. cpp 7255    <P cltp 7257    ~R cer 7258   R.cnr 7259    <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134  df-opab 4051  df-xp 4617  df-ltr 7692
This theorem is referenced by:  gt0srpr  7710  recexgt0sr  7735  addgt0sr  7737  mulgt0sr  7740  caucvgsrlemcl  7751  caucvgsrlemasr  7752  caucvgsrlemfv  7753  map2psrprg  7767  suplocsrlemb  7768  suplocsrlempr  7769  suplocsrlem  7770  suplocsr  7771  ltresr  7801  axpre-ltirr  7844  axpre-lttrn  7846
  Copyright terms: Public domain W3C validator