ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map2psrprg Unicode version

Theorem map2psrprg 7606
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
map2psrprg  |-  ( C  e.  R.  ->  (
( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
Distinct variable groups:    x, A    x, C

Proof of Theorem map2psrprg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 7539 . . . . . . 7  |-  <R  C_  ( R.  X.  R. )
21brel 4586 . . . . . 6  |-  ( ( C  +R  -1R )  <R  A  ->  ( ( C  +R  -1R )  e. 
R.  /\  A  e.  R. ) )
32simprd 113 . . . . 5  |-  ( ( C  +R  -1R )  <R  A  ->  A  e.  R. )
43anim2i 339 . . . 4  |-  ( ( C  e.  R.  /\  ( C  +R  -1R )  <R  A )  ->  ( C  e.  R.  /\  A  e.  R. ) )
5 simpr 109 . . . 4  |-  ( ( C  e.  R.  /\  ( C  +R  -1R )  <R  A )  ->  ( C  +R  -1R )  <R  A )
6 m1r 7553 . . . . . . . 8  |-  -1R  e.  R.
76a1i 9 . . . . . . 7  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  -1R  e.  R. )
8 simpl 108 . . . . . . . . 9  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  C  e.  R. )
9 mulclsr 7555 . . . . . . . . 9  |-  ( ( C  e.  R.  /\  -1R  e.  R. )  -> 
( C  .R  -1R )  e.  R. )
108, 7, 9syl2anc 408 . . . . . . . 8  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( C  .R  -1R )  e.  R. )
11 simpr 109 . . . . . . . 8  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  A  e.  R. )
12 addclsr 7554 . . . . . . . 8  |-  ( ( ( C  .R  -1R )  e.  R.  /\  A  e.  R. )  ->  (
( C  .R  -1R )  +R  A )  e. 
R. )
1310, 11, 12syl2anc 408 . . . . . . 7  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( ( C  .R  -1R )  +R  A
)  e.  R. )
14 ltasrg 7571 . . . . . . 7  |-  ( ( -1R  e.  R.  /\  ( ( C  .R  -1R )  +R  A
)  e.  R.  /\  C  e.  R. )  ->  ( -1R  <R  (
( C  .R  -1R )  +R  A )  <->  ( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A ) ) ) )
157, 13, 8, 14syl3anc 1216 . . . . . 6  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( -1R  <R  (
( C  .R  -1R )  +R  A )  <->  ( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A ) ) ) )
16 pn0sr 7572 . . . . . . . . . . 11  |-  ( C  e.  R.  ->  ( C  +R  ( C  .R  -1R ) )  =  0R )
1716oveq1d 5782 . . . . . . . . . 10  |-  ( C  e.  R.  ->  (
( C  +R  ( C  .R  -1R ) )  +R  A )  =  ( 0R  +R  A
) )
1817adantr 274 . . . . . . . . 9  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( ( C  +R  ( C  .R  -1R )
)  +R  A )  =  ( 0R  +R  A ) )
19 addasssrg 7557 . . . . . . . . . 10  |-  ( ( C  e.  R.  /\  ( C  .R  -1R )  e.  R.  /\  A  e. 
R. )  ->  (
( C  +R  ( C  .R  -1R ) )  +R  A )  =  ( C  +R  (
( C  .R  -1R )  +R  A ) ) )
208, 10, 11, 19syl3anc 1216 . . . . . . . . 9  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( ( C  +R  ( C  .R  -1R )
)  +R  A )  =  ( C  +R  ( ( C  .R  -1R )  +R  A
) ) )
21 0r 7551 . . . . . . . . . . 11  |-  0R  e.  R.
2221a1i 9 . . . . . . . . . 10  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  0R  e.  R. )
23 addcomsrg 7556 . . . . . . . . . 10  |-  ( ( 0R  e.  R.  /\  A  e.  R. )  ->  ( 0R  +R  A
)  =  ( A  +R  0R ) )
2422, 11, 23syl2anc 408 . . . . . . . . 9  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( 0R  +R  A
)  =  ( A  +R  0R ) )
2518, 20, 243eqtr3d 2178 . . . . . . . 8  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( C  +R  (
( C  .R  -1R )  +R  A ) )  =  ( A  +R  0R ) )
26 0idsr 7568 . . . . . . . . 9  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
2726adantl 275 . . . . . . . 8  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( A  +R  0R )  =  A )
2825, 27eqtrd 2170 . . . . . . 7  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( C  +R  (
( C  .R  -1R )  +R  A ) )  =  A )
2928breq2d 3936 . . . . . 6  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( ( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A ) )  <->  ( C  +R  -1R )  <R  A ) )
3015, 29bitrd 187 . . . . 5  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( -1R  <R  (
( C  .R  -1R )  +R  A )  <->  ( C  +R  -1R )  <R  A ) )
316, 9mpan2 421 . . . . . . . 8  |-  ( C  e.  R.  ->  ( C  .R  -1R )  e. 
R. )
3231, 12sylan 281 . . . . . . 7  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( ( C  .R  -1R )  +R  A
)  e.  R. )
33 df-nr 7528 . . . . . . . 8  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
34 breq2 3928 . . . . . . . . 9  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( -1R  <R  [ <. y ,  z >. ]  ~R  <->  -1R 
<R  ( ( C  .R  -1R )  +R  A
) ) )
35 eqeq2 2147 . . . . . . . . . 10  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
3635rexbidv 2436 . . . . . . . . 9  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  E. x  e.  P.  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
3734, 36imbi12d 233 . . . . . . . 8  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  (
( -1R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  ) 
<->  ( -1R  <R  (
( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) ) )
38 df-m1r 7534 . . . . . . . . . . . 12  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
3938breq1i 3931 . . . . . . . . . . 11  |-  ( -1R 
<R  [ <. y ,  z
>. ]  ~R  <->  [ <. 1P , 
( 1P  +P.  1P ) >. ]  ~R  <R  [
<. y ,  z >. ]  ~R  )
40 1pr 7355 . . . . . . . . . . . . . . 15  |-  1P  e.  P.
41 addassprg 7380 . . . . . . . . . . . . . . 15  |-  ( ( 1P  e.  P.  /\  1P  e.  P.  /\  y  e.  P. )  ->  (
( 1P  +P.  1P )  +P.  y )  =  ( 1P  +P.  ( 1P  +P.  y ) ) )
4240, 40, 41mp3an12 1305 . . . . . . . . . . . . . 14  |-  ( y  e.  P.  ->  (
( 1P  +P.  1P )  +P.  y )  =  ( 1P  +P.  ( 1P  +P.  y ) ) )
4342breq2d 3936 . . . . . . . . . . . . 13  |-  ( y  e.  P.  ->  (
( 1P  +P.  z
)  <P  ( ( 1P 
+P.  1P )  +P.  y
)  <->  ( 1P  +P.  z )  <P  ( 1P  +P.  ( 1P  +P.  y ) ) ) )
4443adantr 274 . . . . . . . . . . . 12  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( ( 1P  +P.  z )  <P  (
( 1P  +P.  1P )  +P.  y )  <->  ( 1P  +P.  z )  <P  ( 1P  +P.  ( 1P  +P.  y ) ) ) )
45 addclpr 7338 . . . . . . . . . . . . . 14  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
4640, 40, 45mp2an 422 . . . . . . . . . . . . 13  |-  ( 1P 
+P.  1P )  e.  P.
47 ltsrprg 7548 . . . . . . . . . . . . 13  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  <R  [ <. y ,  z
>. ]  ~R  <->  ( 1P  +P.  z )  <P  (
( 1P  +P.  1P )  +P.  y ) ) )
4840, 46, 47mpanl12 432 . . . . . . . . . . . 12  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( [ <. 1P , 
( 1P  +P.  1P ) >. ]  ~R  <R  [
<. y ,  z >. ]  ~R  <->  ( 1P  +P.  z )  <P  (
( 1P  +P.  1P )  +P.  y ) ) )
49 simpr 109 . . . . . . . . . . . . 13  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  z  e.  P. )
5040a1i 9 . . . . . . . . . . . . . 14  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  1P  e.  P. )
51 simpl 108 . . . . . . . . . . . . . 14  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  y  e.  P. )
52 addclpr 7338 . . . . . . . . . . . . . 14  |-  ( ( 1P  e.  P.  /\  y  e.  P. )  ->  ( 1P  +P.  y
)  e.  P. )
5350, 51, 52syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( 1P  +P.  y
)  e.  P. )
54 ltaprg 7420 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  ( 1P  +P.  y )  e.  P.  /\  1P  e.  P. )  ->  (
z  <P  ( 1P  +P.  y )  <->  ( 1P  +P.  z )  <P  ( 1P  +P.  ( 1P  +P.  y ) ) ) )
5549, 53, 50, 54syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( z  <P  ( 1P  +P.  y )  <->  ( 1P  +P.  z )  <P  ( 1P  +P.  ( 1P  +P.  y ) ) ) )
5644, 48, 553bitr4d 219 . . . . . . . . . . 11  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( [ <. 1P , 
( 1P  +P.  1P ) >. ]  ~R  <R  [
<. y ,  z >. ]  ~R  <->  z  <P  ( 1P  +P.  y ) ) )
5739, 56syl5bb 191 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( -1R  <R  [ <. y ,  z >. ]  ~R  <->  z 
<P  ( 1P  +P.  y
) ) )
58 ltexpri 7414 . . . . . . . . . 10  |-  ( z 
<P  ( 1P  +P.  y
)  ->  E. x  e.  P.  ( z  +P.  x )  =  ( 1P  +P.  y ) )
5957, 58syl6bi 162 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( -1R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  P.  ( z  +P.  x
)  =  ( 1P 
+P.  y ) ) )
60 enreceq 7537 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  P.  /\  1P  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) ) )
6140, 60mpanl2 431 . . . . . . . . . . . 12  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) ) )
6249adantl 275 . . . . . . . . . . . . . 14  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  z  e.  P. )
63 simpl 108 . . . . . . . . . . . . . 14  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  x  e.  P. )
64 addcomprg 7379 . . . . . . . . . . . . . 14  |-  ( ( z  e.  P.  /\  x  e.  P. )  ->  ( z  +P.  x
)  =  ( x  +P.  z ) )
6562, 63, 64syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( z  +P.  x )  =  ( x  +P.  z ) )
6665eqeq1d 2146 . . . . . . . . . . . 12  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
z  +P.  x )  =  ( 1P  +P.  y )  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) ) )
6761, 66bitr4d 190 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
6867ancoms 266 . . . . . . . . . 10  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  x  e.  P. )  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z
>. ]  ~R  <->  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
6968rexbidva 2432 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. x  e. 
P.  [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z
>. ]  ~R  <->  E. x  e.  P.  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
7059, 69sylibrd 168 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( -1R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  ) )
7133, 37, 70ecoptocl 6509 . . . . . . 7  |-  ( ( ( C  .R  -1R )  +R  A )  e. 
R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
7232, 71syl 14 . . . . . 6  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( -1R  <R  (
( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
73 oveq2 5775 . . . . . . . . 9  |-  ( [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  ( C  +R  ( ( C  .R  -1R )  +R  A
) ) )
7473, 28sylan9eqr 2192 . . . . . . . 8  |-  ( ( ( C  e.  R.  /\  A  e.  R. )  /\  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) )  ->  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A )
7574ex 114 . . . . . . 7  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A
)  ->  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A ) )
7675reximdv 2531 . . . . . 6  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( E. x  e. 
P.  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A
)  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
7772, 76syld 45 . . . . 5  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( -1R  <R  (
( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
)
7830, 77sylbird 169 . . . 4  |-  ( ( C  e.  R.  /\  A  e.  R. )  ->  ( ( C  +R  -1R )  <R  A  ->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
)
794, 5, 78sylc 62 . . 3  |-  ( ( C  e.  R.  /\  ( C  +R  -1R )  <R  A )  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A )
8079ex 114 . 2  |-  ( C  e.  R.  ->  (
( C  +R  -1R )  <R  A  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
81 mappsrprg 7605 . . . . 5  |-  ( ( x  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. x ,  1P >. ]  ~R  ) )
82 breq2 3928 . . . . 5  |-  ( ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A  ->  ( ( C  +R  -1R )  <R  ( C  +R  [
<. x ,  1P >. ]  ~R  )  <->  ( C  +R  -1R )  <R  A ) )
8381, 82syl5ibcom 154 . . . 4  |-  ( ( x  e.  P.  /\  C  e.  R. )  ->  ( ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A  ->  ( C  +R  -1R )  <R  A ) )
8483ancoms 266 . . 3  |-  ( ( C  e.  R.  /\  x  e.  P. )  ->  ( ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A  ->  ( C  +R  -1R )  <R  A ) )
8584rexlimdva 2547 . 2  |-  ( C  e.  R.  ->  ( E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A  ->  ( C  +R  -1R )  <R  A ) )
8680, 85impbid 128 1  |-  ( C  e.  R.  ->  (
( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415   <.cop 3525   class class class wbr 3924  (class class class)co 5767   [cec 6420   P.cnp 7092   1Pc1p 7093    +P. cpp 7094    <P cltp 7096    ~R cer 7097   R.cnr 7098   0Rc0r 7099   -1Rcm1r 7101    +R cplr 7102    .R cmr 7103    <R cltr 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-i1p 7268  df-iplp 7269  df-imp 7270  df-iltp 7271  df-enr 7527  df-nr 7528  df-plr 7529  df-mr 7530  df-ltr 7531  df-0r 7532  df-1r 7533  df-m1r 7534
This theorem is referenced by:  suplocsrlemb  7607  suplocsrlempr  7608  suplocsrlem  7609
  Copyright terms: Public domain W3C validator