ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidi Unicode version

Theorem ovidi 5755
Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidi.2  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )
ovidi.3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ovidi  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ph  ->  (
x F y )  =  z ) )
Distinct variable groups:    x, y, z   
z, R    z, S
Allowed substitution hints:    ph( x, y, z)    R( x, y)    S( x, y)    F( x, y, z)

Proof of Theorem ovidi
StepHypRef Expression
1 ovidi.2 . . . 4  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )
2 moanimv 2023 . . . 4  |-  ( E* z ( ( x  e.  R  /\  y  e.  S )  /\  ph ) 
<->  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph ) )
31, 2mpbir 144 . . 3  |-  E* z
( ( x  e.  R  /\  y  e.  S )  /\  ph )
4 ovidi.3 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
53, 4ovidig 5754 . 2  |-  ( ( ( x  e.  R  /\  y  e.  S
)  /\  ph )  -> 
( x F y )  =  z )
65ex 113 1  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ph  ->  (
x F y )  =  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   E*wmo 1949  (class class class)co 5644   {coprab 5645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034  ax-setind 4351
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-br 3844  df-opab 3898  df-id 4118  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-iota 4975  df-fun 5012  df-fv 5018  df-ov 5647  df-oprab 5648
This theorem is referenced by:  ovmpt4g  5759  ovi3  5773
  Copyright terms: Public domain W3C validator