ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexw GIF version

Theorem mptexw 6170
Description: Weak version of mptex 5788 that holds without ax-coll 4148. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1 𝐴 ∈ V
mptexw.2 𝐶 ∈ V
mptexw.3 𝑥𝐴 𝐵𝐶
Assertion
Ref Expression
mptexw (𝑥𝐴𝐵) ∈ V
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 5296 . 2 Fun (𝑥𝐴𝐵)
2 mptexw.1 . . 3 𝐴 ∈ V
3 eqid 2196 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmptss 5166 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
52, 4ssexi 4171 . 2 dom (𝑥𝐴𝐵) ∈ V
6 mptexw.2 . . 3 𝐶 ∈ V
7 mptexw.3 . . . 4 𝑥𝐴 𝐵𝐶
83rnmptss 5723 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ran (𝑥𝐴𝐵) ⊆ 𝐶)
97, 8ax-mp 5 . . 3 ran (𝑥𝐴𝐵) ⊆ 𝐶
106, 9ssexi 4171 . 2 ran (𝑥𝐴𝐵) ∈ V
11 funexw 6169 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V ∧ ran (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
121, 5, 10, 11mp3an 1348 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  wral 2475  Vcvv 2763  wss 3157  cmpt 4094  dom cdm 4663  ran crn 4664  Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator