ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexw GIF version

Theorem mptexw 6104
Description: Weak version of mptex 5734 that holds without ax-coll 4113. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1 𝐴 ∈ V
mptexw.2 𝐶 ∈ V
mptexw.3 𝑥𝐴 𝐵𝐶
Assertion
Ref Expression
mptexw (𝑥𝐴𝐵) ∈ V
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 5246 . 2 Fun (𝑥𝐴𝐵)
2 mptexw.1 . . 3 𝐴 ∈ V
3 eqid 2175 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmptss 5117 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
52, 4ssexi 4136 . 2 dom (𝑥𝐴𝐵) ∈ V
6 mptexw.2 . . 3 𝐶 ∈ V
7 mptexw.3 . . . 4 𝑥𝐴 𝐵𝐶
83rnmptss 5669 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ran (𝑥𝐴𝐵) ⊆ 𝐶)
97, 8ax-mp 5 . . 3 ran (𝑥𝐴𝐵) ⊆ 𝐶
106, 9ssexi 4136 . 2 ran (𝑥𝐴𝐵) ∈ V
11 funexw 6103 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V ∧ ran (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
121, 5, 10, 11mp3an 1337 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2146  wral 2453  Vcvv 2735  wss 3127  cmpt 4059  dom cdm 4620  ran crn 4621  Fun wfun 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator