| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptexw | GIF version | ||
| Description: Weak version of mptex 5823 that holds without ax-coll 4167. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mptexw.1 | ⊢ 𝐴 ∈ V |
| mptexw.2 | ⊢ 𝐶 ∈ V |
| mptexw.3 | ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| mptexw | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 5318 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | mptexw.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | eqid 2206 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | dmmptss 5188 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 5 | 2, 4 | ssexi 4190 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 6 | mptexw.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | mptexw.3 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
| 8 | 3 | rnmptss 5754 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐶) |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐶 |
| 10 | 6, 9 | ssexi 4190 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 11 | funexw 6210 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 12 | 1, 5, 10, 11 | mp3an 1350 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ⊆ wss 3170 ↦ cmpt 4113 dom cdm 4683 ran crn 4684 Fun wfun 5274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |