| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > remullem | Unicode version | ||
| Description: Lemma for remul 11054, immul 11061, and cjmul 11067. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| remullem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim 11041 |
. . . . . 6
| |
| 2 | replim 11041 |
. . . . . 6
| |
| 3 | 1, 2 | oveqan12d 5944 |
. . . . 5
|
| 4 | recl 11035 |
. . . . . . . . 9
| |
| 5 | 4 | adantr 276 |
. . . . . . . 8
|
| 6 | 5 | recnd 8072 |
. . . . . . 7
|
| 7 | ax-icn 7991 |
. . . . . . . 8
| |
| 8 | imcl 11036 |
. . . . . . . . . 10
| |
| 9 | 8 | adantr 276 |
. . . . . . . . 9
|
| 10 | 9 | recnd 8072 |
. . . . . . . 8
|
| 11 | mulcl 8023 |
. . . . . . . 8
| |
| 12 | 7, 10, 11 | sylancr 414 |
. . . . . . 7
|
| 13 | 6, 12 | addcld 8063 |
. . . . . 6
|
| 14 | recl 11035 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | 15 | recnd 8072 |
. . . . . 6
|
| 17 | imcl 11036 |
. . . . . . . . 9
| |
| 18 | 17 | adantl 277 |
. . . . . . . 8
|
| 19 | 18 | recnd 8072 |
. . . . . . 7
|
| 20 | mulcl 8023 |
. . . . . . 7
| |
| 21 | 7, 19, 20 | sylancr 414 |
. . . . . 6
|
| 22 | 13, 16, 21 | adddid 8068 |
. . . . 5
|
| 23 | 6, 12, 16 | adddird 8069 |
. . . . . . 7
|
| 24 | 6, 12, 21 | adddird 8069 |
. . . . . . 7
|
| 25 | 23, 24 | oveq12d 5943 |
. . . . . 6
|
| 26 | 5, 15 | remulcld 8074 |
. . . . . . . 8
|
| 27 | 26 | recnd 8072 |
. . . . . . 7
|
| 28 | 12, 21 | mulcld 8064 |
. . . . . . 7
|
| 29 | 12, 16 | mulcld 8064 |
. . . . . . 7
|
| 30 | 6, 21 | mulcld 8064 |
. . . . . . 7
|
| 31 | 27, 28, 29, 30 | add42d 8213 |
. . . . . 6
|
| 32 | 7 | a1i 9 |
. . . . . . . . . . 11
|
| 33 | 32, 10, 32, 19 | mul4d 8198 |
. . . . . . . . . 10
|
| 34 | ixi 8627 |
. . . . . . . . . . . 12
| |
| 35 | 34 | oveq1i 5935 |
. . . . . . . . . . 11
|
| 36 | 9, 18 | remulcld 8074 |
. . . . . . . . . . . . 13
|
| 37 | 36 | recnd 8072 |
. . . . . . . . . . . 12
|
| 38 | 37 | mulm1d 8453 |
. . . . . . . . . . 11
|
| 39 | 35, 38 | eqtrid 2241 |
. . . . . . . . . 10
|
| 40 | 33, 39 | eqtrd 2229 |
. . . . . . . . 9
|
| 41 | 40 | oveq2d 5941 |
. . . . . . . 8
|
| 42 | 27, 37 | negsubd 8360 |
. . . . . . . 8
|
| 43 | 41, 42 | eqtrd 2229 |
. . . . . . 7
|
| 44 | 9, 15 | remulcld 8074 |
. . . . . . . . . . 11
|
| 45 | 44 | recnd 8072 |
. . . . . . . . . 10
|
| 46 | mulcl 8023 |
. . . . . . . . . 10
| |
| 47 | 7, 45, 46 | sylancr 414 |
. . . . . . . . 9
|
| 48 | 5, 18 | remulcld 8074 |
. . . . . . . . . . 11
|
| 49 | 48 | recnd 8072 |
. . . . . . . . . 10
|
| 50 | mulcl 8023 |
. . . . . . . . . 10
| |
| 51 | 7, 49, 50 | sylancr 414 |
. . . . . . . . 9
|
| 52 | 47, 51 | addcomd 8194 |
. . . . . . . 8
|
| 53 | 32, 10, 16 | mulassd 8067 |
. . . . . . . . 9
|
| 54 | 6, 32, 19 | mul12d 8195 |
. . . . . . . . 9
|
| 55 | 53, 54 | oveq12d 5943 |
. . . . . . . 8
|
| 56 | 32, 49, 45 | adddid 8068 |
. . . . . . . 8
|
| 57 | 52, 55, 56 | 3eqtr4d 2239 |
. . . . . . 7
|
| 58 | 43, 57 | oveq12d 5943 |
. . . . . 6
|
| 59 | 25, 31, 58 | 3eqtr2d 2235 |
. . . . 5
|
| 60 | 3, 22, 59 | 3eqtrd 2233 |
. . . 4
|
| 61 | 60 | fveq2d 5565 |
. . 3
|
| 62 | 26, 36 | resubcld 8424 |
. . . 4
|
| 63 | 48, 44 | readdcld 8073 |
. . . 4
|
| 64 | crre 11039 |
. . . 4
| |
| 65 | 62, 63, 64 | syl2anc 411 |
. . 3
|
| 66 | 61, 65 | eqtrd 2229 |
. 2
|
| 67 | 60 | fveq2d 5565 |
. . 3
|
| 68 | crim 11040 |
. . . 4
| |
| 69 | 62, 63, 68 | syl2anc 411 |
. . 3
|
| 70 | 67, 69 | eqtrd 2229 |
. 2
|
| 71 | mulcl 8023 |
. . . 4
| |
| 72 | remim 11042 |
. . . 4
| |
| 73 | 71, 72 | syl 14 |
. . 3
|
| 74 | remim 11042 |
. . . . 5
| |
| 75 | remim 11042 |
. . . . 5
| |
| 76 | 74, 75 | oveqan12d 5944 |
. . . 4
|
| 77 | 16, 21 | subcld 8354 |
. . . . 5
|
| 78 | 6, 12, 77 | subdird 8458 |
. . . 4
|
| 79 | 27, 30, 29, 28 | subadd4d 8402 |
. . . . 5
|
| 80 | 6, 16, 21 | subdid 8457 |
. . . . . 6
|
| 81 | 12, 16, 21 | subdid 8457 |
. . . . . 6
|
| 82 | 80, 81 | oveq12d 5943 |
. . . . 5
|
| 83 | 65, 61, 43 | 3eqtr4d 2239 |
. . . . . 6
|
| 84 | 70 | oveq2d 5941 |
. . . . . . 7
|
| 85 | 54, 53 | oveq12d 5943 |
. . . . . . 7
|
| 86 | 56, 84, 85 | 3eqtr4d 2239 |
. . . . . 6
|
| 87 | 83, 86 | oveq12d 5943 |
. . . . 5
|
| 88 | 79, 82, 87 | 3eqtr4d 2239 |
. . . 4
|
| 89 | 76, 78, 88 | 3eqtrd 2233 |
. . 3
|
| 90 | 73, 89 | eqtr4d 2232 |
. 2
|
| 91 | 66, 70, 90 | 3jca 1179 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-2 9066 df-cj 11024 df-re 11025 df-im 11026 |
| This theorem is referenced by: remul 11054 immul 11061 cjmul 11067 |
| Copyright terms: Public domain | W3C validator |