ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remullem Unicode version

Theorem remullem 11297
Description: Lemma for remul 11298, immul 11305, and cjmul 11311. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )

Proof of Theorem remullem
StepHypRef Expression
1 replim 11285 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2 replim 11285 . . . . . 6  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
31, 2oveqan12d 5986 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) ) )
4 recl 11279 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
54adantr 276 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
65recnd 8136 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
7 ax-icn 8055 . . . . . . . 8  |-  _i  e.  CC
8 imcl 11280 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
98adantr 276 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
109recnd 8136 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
11 mulcl 8087 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
127, 10, 11sylancr 414 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
136, 12addcld 8127 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  e.  CC )
14 recl 11279 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1514adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
1615recnd 8136 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
17 imcl 11280 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1817adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1918recnd 8136 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
20 mulcl 8087 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
217, 19, 20sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
2213, 16, 21adddid 8132 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  x.  ( Re
`  B ) )  +  ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
_i  x.  ( Im `  B ) ) ) ) )
236, 12, 16adddird 8133 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
Re `  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) ) )
246, 12, 21adddird 8133 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
2523, 24oveq12d 5985 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) ) )  +  ( ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) ) )
265, 15remulcld 8138 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  RR )
2726recnd 8136 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
2812, 21mulcld 8128 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  e.  CC )
2912, 16mulcld 8128 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  e.  CC )
306, 21mulcld 8128 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  e.  CC )
3127, 28, 29, 30add42d 8277 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) )  +  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
327a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
3332, 10, 32, 19mul4d 8262 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  A )  x.  (
Im `  B )
) ) )
34 ixi 8691 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
3534oveq1i 5977 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  A )  x.  ( Im `  B
) ) )  =  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )
369, 18remulcld 8138 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  RR )
3736recnd 8136 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
3837mulm1d 8517 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )  =  -u ( ( Im `  A )  x.  (
Im `  B )
) )
3935, 38eqtrid 2252 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
4033, 39eqtrd 2240 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  -u ( ( Im
`  A )  x.  ( Im `  B
) ) )
4140oveq2d 5983 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  -u ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
4227, 37negsubd 8424 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  -u ( ( Im `  A )  x.  (
Im `  B )
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
4341, 42eqtrd 2240 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
449, 15remulcld 8138 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  RR )
4544recnd 8136 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )
46 mulcl 8087 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  e.  CC )
477, 45, 46sylancr 414 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  x.  ( Re
`  B ) ) )  e.  CC )
485, 18remulcld 8138 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  RR )
4948recnd 8136 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )
50 mulcl 8087 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) )  e.  CC )
517, 49, 50sylancr 414 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Re `  A
)  x.  ( Im
`  B ) ) )  e.  CC )
5247, 51addcomd 8258 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  +  ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5332, 10, 16mulassd 8131 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  =  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) )
546, 32, 19mul12d 8259 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) )
5553, 54oveq12d 5985 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Im `  A )  x.  ( Re `  B ) ) )  +  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) ) )
5632, 49, 45adddid 8132 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5752, 55, 563eqtr4d 2250 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5843, 57oveq12d 5985 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) )
5925, 31, 583eqtr2d 2246 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )
603, 22, 593eqtrd 2244 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) ) )
6160fveq2d 5603 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( Re
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
6226, 36resubcld 8488 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR )
6348, 44readdcld 8137 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )
64 crre 11283 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Re `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
6562, 63, 64syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6661, 65eqtrd 2240 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6760fveq2d 5603 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( Im
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
68 crim 11284 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Im `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )
6962, 63, 68syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
7067, 69eqtrd 2240 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
71 mulcl 8087 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
72 remim 11286 . . . 4  |-  ( ( A  x.  B )  e.  CC  ->  (
* `  ( A  x.  B ) )  =  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) ) )
7371, 72syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
74 remim 11286 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
75 remim 11286 . . . . 5  |-  ( B  e.  CC  ->  (
* `  B )  =  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) )
7674, 75oveqan12d 5986 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
7716, 21subcld 8418 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) )  e.  CC )
786, 12, 77subdird 8522 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) ) ) )
7927, 30, 29, 28subadd4d 8466 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
806, 16, 21subdid 8521 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8112, 16, 21subdid 8521 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
8280, 81oveq12d 5985 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
8365, 61, 433eqtr4d 2250 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8470oveq2d 5983 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) )
8554, 53oveq12d 5985 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
8656, 84, 853eqtr4d 2250 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) )
8783, 86oveq12d 5985 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
8879, 82, 873eqtr4d 2250 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( Re
`  ( A  x.  B ) )  -  ( _i  x.  (
Im `  ( A  x.  B ) ) ) ) )
8976, 78, 883eqtrd 2244 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
9073, 89eqtr4d 2243 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( * `  A )  x.  ( * `  B ) ) )
9166, 70, 903jca 1180 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   1c1 7961   _ici 7962    + caddc 7963    x. cmul 7965    - cmin 8278   -ucneg 8279   *ccj 11265   Recre 11266   Imcim 11267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-2 9130  df-cj 11268  df-re 11269  df-im 11270
This theorem is referenced by:  remul  11298  immul  11305  cjmul  11311
  Copyright terms: Public domain W3C validator