ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remullem Unicode version

Theorem remullem 10822
Description: Lemma for remul 10823, immul 10830, and cjmul 10836. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )

Proof of Theorem remullem
StepHypRef Expression
1 replim 10810 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2 replim 10810 . . . . . 6  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
31, 2oveqan12d 5869 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) ) )
4 recl 10804 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
54adantr 274 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
65recnd 7935 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
7 ax-icn 7856 . . . . . . . 8  |-  _i  e.  CC
8 imcl 10805 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
98adantr 274 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
109recnd 7935 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
11 mulcl 7888 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
127, 10, 11sylancr 412 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
136, 12addcld 7926 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  e.  CC )
14 recl 10804 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1514adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
1615recnd 7935 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
17 imcl 10805 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1817adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1918recnd 7935 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
20 mulcl 7888 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
217, 19, 20sylancr 412 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
2213, 16, 21adddid 7931 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  x.  ( Re
`  B ) )  +  ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
_i  x.  ( Im `  B ) ) ) ) )
236, 12, 16adddird 7932 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
Re `  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) ) )
246, 12, 21adddird 7932 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
2523, 24oveq12d 5868 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) ) )  +  ( ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) ) )
265, 15remulcld 7937 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  RR )
2726recnd 7935 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
2812, 21mulcld 7927 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  e.  CC )
2912, 16mulcld 7927 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  e.  CC )
306, 21mulcld 7927 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  e.  CC )
3127, 28, 29, 30add42d 8076 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) )  +  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
327a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
3332, 10, 32, 19mul4d 8061 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  A )  x.  (
Im `  B )
) ) )
34 ixi 8489 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
3534oveq1i 5860 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  A )  x.  ( Im `  B
) ) )  =  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )
369, 18remulcld 7937 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  RR )
3736recnd 7935 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
3837mulm1d 8316 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )  =  -u ( ( Im `  A )  x.  (
Im `  B )
) )
3935, 38eqtrid 2215 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
4033, 39eqtrd 2203 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  -u ( ( Im
`  A )  x.  ( Im `  B
) ) )
4140oveq2d 5866 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  -u ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
4227, 37negsubd 8223 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  -u ( ( Im `  A )  x.  (
Im `  B )
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
4341, 42eqtrd 2203 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
449, 15remulcld 7937 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  RR )
4544recnd 7935 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )
46 mulcl 7888 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  e.  CC )
477, 45, 46sylancr 412 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  x.  ( Re
`  B ) ) )  e.  CC )
485, 18remulcld 7937 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  RR )
4948recnd 7935 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )
50 mulcl 7888 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) )  e.  CC )
517, 49, 50sylancr 412 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Re `  A
)  x.  ( Im
`  B ) ) )  e.  CC )
5247, 51addcomd 8057 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  +  ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5332, 10, 16mulassd 7930 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  =  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) )
546, 32, 19mul12d 8058 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) )
5553, 54oveq12d 5868 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Im `  A )  x.  ( Re `  B ) ) )  +  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) ) )
5632, 49, 45adddid 7931 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5752, 55, 563eqtr4d 2213 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5843, 57oveq12d 5868 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) )
5925, 31, 583eqtr2d 2209 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )
603, 22, 593eqtrd 2207 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) ) )
6160fveq2d 5498 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( Re
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
6226, 36resubcld 8287 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR )
6348, 44readdcld 7936 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )
64 crre 10808 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Re `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
6562, 63, 64syl2anc 409 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6661, 65eqtrd 2203 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6760fveq2d 5498 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( Im
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
68 crim 10809 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Im `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )
6962, 63, 68syl2anc 409 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
7067, 69eqtrd 2203 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
71 mulcl 7888 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
72 remim 10811 . . . 4  |-  ( ( A  x.  B )  e.  CC  ->  (
* `  ( A  x.  B ) )  =  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) ) )
7371, 72syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
74 remim 10811 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
75 remim 10811 . . . . 5  |-  ( B  e.  CC  ->  (
* `  B )  =  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) )
7674, 75oveqan12d 5869 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
7716, 21subcld 8217 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) )  e.  CC )
786, 12, 77subdird 8321 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) ) ) )
7927, 30, 29, 28subadd4d 8265 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
806, 16, 21subdid 8320 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8112, 16, 21subdid 8320 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
8280, 81oveq12d 5868 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
8365, 61, 433eqtr4d 2213 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8470oveq2d 5866 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) )
8554, 53oveq12d 5868 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
8656, 84, 853eqtr4d 2213 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) )
8783, 86oveq12d 5868 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
8879, 82, 873eqtr4d 2213 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( Re
`  ( A  x.  B ) )  -  ( _i  x.  (
Im `  ( A  x.  B ) ) ) ) )
8976, 78, 883eqtrd 2207 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
9073, 89eqtr4d 2206 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( * `  A )  x.  ( * `  B ) ) )
9166, 70, 903jca 1172 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   ` cfv 5196  (class class class)co 5850   CCcc 7759   RRcr 7760   1c1 7762   _ici 7763    + caddc 7764    x. cmul 7766    - cmin 8077   -ucneg 8078   *ccj 10790   Recre 10791   Imcim 10792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-2 8924  df-cj 10793  df-re 10794  df-im 10795
This theorem is referenced by:  remul  10823  immul  10830  cjmul  10836
  Copyright terms: Public domain W3C validator