| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > remullem | Unicode version | ||
| Description: Lemma for remul 11298, immul 11305, and cjmul 11311. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| remullem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim 11285 |
. . . . . 6
| |
| 2 | replim 11285 |
. . . . . 6
| |
| 3 | 1, 2 | oveqan12d 5986 |
. . . . 5
|
| 4 | recl 11279 |
. . . . . . . . 9
| |
| 5 | 4 | adantr 276 |
. . . . . . . 8
|
| 6 | 5 | recnd 8136 |
. . . . . . 7
|
| 7 | ax-icn 8055 |
. . . . . . . 8
| |
| 8 | imcl 11280 |
. . . . . . . . . 10
| |
| 9 | 8 | adantr 276 |
. . . . . . . . 9
|
| 10 | 9 | recnd 8136 |
. . . . . . . 8
|
| 11 | mulcl 8087 |
. . . . . . . 8
| |
| 12 | 7, 10, 11 | sylancr 414 |
. . . . . . 7
|
| 13 | 6, 12 | addcld 8127 |
. . . . . 6
|
| 14 | recl 11279 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | 15 | recnd 8136 |
. . . . . 6
|
| 17 | imcl 11280 |
. . . . . . . . 9
| |
| 18 | 17 | adantl 277 |
. . . . . . . 8
|
| 19 | 18 | recnd 8136 |
. . . . . . 7
|
| 20 | mulcl 8087 |
. . . . . . 7
| |
| 21 | 7, 19, 20 | sylancr 414 |
. . . . . 6
|
| 22 | 13, 16, 21 | adddid 8132 |
. . . . 5
|
| 23 | 6, 12, 16 | adddird 8133 |
. . . . . . 7
|
| 24 | 6, 12, 21 | adddird 8133 |
. . . . . . 7
|
| 25 | 23, 24 | oveq12d 5985 |
. . . . . 6
|
| 26 | 5, 15 | remulcld 8138 |
. . . . . . . 8
|
| 27 | 26 | recnd 8136 |
. . . . . . 7
|
| 28 | 12, 21 | mulcld 8128 |
. . . . . . 7
|
| 29 | 12, 16 | mulcld 8128 |
. . . . . . 7
|
| 30 | 6, 21 | mulcld 8128 |
. . . . . . 7
|
| 31 | 27, 28, 29, 30 | add42d 8277 |
. . . . . 6
|
| 32 | 7 | a1i 9 |
. . . . . . . . . . 11
|
| 33 | 32, 10, 32, 19 | mul4d 8262 |
. . . . . . . . . 10
|
| 34 | ixi 8691 |
. . . . . . . . . . . 12
| |
| 35 | 34 | oveq1i 5977 |
. . . . . . . . . . 11
|
| 36 | 9, 18 | remulcld 8138 |
. . . . . . . . . . . . 13
|
| 37 | 36 | recnd 8136 |
. . . . . . . . . . . 12
|
| 38 | 37 | mulm1d 8517 |
. . . . . . . . . . 11
|
| 39 | 35, 38 | eqtrid 2252 |
. . . . . . . . . 10
|
| 40 | 33, 39 | eqtrd 2240 |
. . . . . . . . 9
|
| 41 | 40 | oveq2d 5983 |
. . . . . . . 8
|
| 42 | 27, 37 | negsubd 8424 |
. . . . . . . 8
|
| 43 | 41, 42 | eqtrd 2240 |
. . . . . . 7
|
| 44 | 9, 15 | remulcld 8138 |
. . . . . . . . . . 11
|
| 45 | 44 | recnd 8136 |
. . . . . . . . . 10
|
| 46 | mulcl 8087 |
. . . . . . . . . 10
| |
| 47 | 7, 45, 46 | sylancr 414 |
. . . . . . . . 9
|
| 48 | 5, 18 | remulcld 8138 |
. . . . . . . . . . 11
|
| 49 | 48 | recnd 8136 |
. . . . . . . . . 10
|
| 50 | mulcl 8087 |
. . . . . . . . . 10
| |
| 51 | 7, 49, 50 | sylancr 414 |
. . . . . . . . 9
|
| 52 | 47, 51 | addcomd 8258 |
. . . . . . . 8
|
| 53 | 32, 10, 16 | mulassd 8131 |
. . . . . . . . 9
|
| 54 | 6, 32, 19 | mul12d 8259 |
. . . . . . . . 9
|
| 55 | 53, 54 | oveq12d 5985 |
. . . . . . . 8
|
| 56 | 32, 49, 45 | adddid 8132 |
. . . . . . . 8
|
| 57 | 52, 55, 56 | 3eqtr4d 2250 |
. . . . . . 7
|
| 58 | 43, 57 | oveq12d 5985 |
. . . . . 6
|
| 59 | 25, 31, 58 | 3eqtr2d 2246 |
. . . . 5
|
| 60 | 3, 22, 59 | 3eqtrd 2244 |
. . . 4
|
| 61 | 60 | fveq2d 5603 |
. . 3
|
| 62 | 26, 36 | resubcld 8488 |
. . . 4
|
| 63 | 48, 44 | readdcld 8137 |
. . . 4
|
| 64 | crre 11283 |
. . . 4
| |
| 65 | 62, 63, 64 | syl2anc 411 |
. . 3
|
| 66 | 61, 65 | eqtrd 2240 |
. 2
|
| 67 | 60 | fveq2d 5603 |
. . 3
|
| 68 | crim 11284 |
. . . 4
| |
| 69 | 62, 63, 68 | syl2anc 411 |
. . 3
|
| 70 | 67, 69 | eqtrd 2240 |
. 2
|
| 71 | mulcl 8087 |
. . . 4
| |
| 72 | remim 11286 |
. . . 4
| |
| 73 | 71, 72 | syl 14 |
. . 3
|
| 74 | remim 11286 |
. . . . 5
| |
| 75 | remim 11286 |
. . . . 5
| |
| 76 | 74, 75 | oveqan12d 5986 |
. . . 4
|
| 77 | 16, 21 | subcld 8418 |
. . . . 5
|
| 78 | 6, 12, 77 | subdird 8522 |
. . . 4
|
| 79 | 27, 30, 29, 28 | subadd4d 8466 |
. . . . 5
|
| 80 | 6, 16, 21 | subdid 8521 |
. . . . . 6
|
| 81 | 12, 16, 21 | subdid 8521 |
. . . . . 6
|
| 82 | 80, 81 | oveq12d 5985 |
. . . . 5
|
| 83 | 65, 61, 43 | 3eqtr4d 2250 |
. . . . . 6
|
| 84 | 70 | oveq2d 5983 |
. . . . . . 7
|
| 85 | 54, 53 | oveq12d 5985 |
. . . . . . 7
|
| 86 | 56, 84, 85 | 3eqtr4d 2250 |
. . . . . 6
|
| 87 | 83, 86 | oveq12d 5985 |
. . . . 5
|
| 88 | 79, 82, 87 | 3eqtr4d 2250 |
. . . 4
|
| 89 | 76, 78, 88 | 3eqtrd 2244 |
. . 3
|
| 90 | 73, 89 | eqtr4d 2243 |
. 2
|
| 91 | 66, 70, 90 | 3jca 1180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-2 9130 df-cj 11268 df-re 11269 df-im 11270 |
| This theorem is referenced by: remul 11298 immul 11305 cjmul 11311 |
| Copyright terms: Public domain | W3C validator |