ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0ii Unicode version

Theorem mulgt0ii 8130
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
mulgt0i.3  |-  0  <  A
mulgt0i.4  |-  0  <  B
Assertion
Ref Expression
mulgt0ii  |-  0  <  ( A  x.  B
)

Proof of Theorem mulgt0ii
StepHypRef Expression
1 mulgt0i.3 . 2  |-  0  <  A
2 mulgt0i.4 . 2  |-  0  <  B
3 lt.1 . . 3  |-  A  e.  RR
4 lt.2 . . 3  |-  B  e.  RR
53, 4mulgt0i 8129 . 2  |-  ( ( 0  <  A  /\  0  <  B )  -> 
0  <  ( A  x.  B ) )
61, 2, 5mp2an 426 1  |-  0  <  ( A  x.  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872    x. cmul 7877    < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-mulrcl 7971  ax-rnegex 7981  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-ltxr 8059
This theorem is referenced by:  ef01bndlem  11899
  Copyright terms: Public domain W3C validator