ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0ii Unicode version

Theorem mulgt0ii 7692
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
mulgt0i.3  |-  0  <  A
mulgt0i.4  |-  0  <  B
Assertion
Ref Expression
mulgt0ii  |-  0  <  ( A  x.  B
)

Proof of Theorem mulgt0ii
StepHypRef Expression
1 mulgt0i.3 . 2  |-  0  <  A
2 mulgt0i.4 . 2  |-  0  <  B
3 lt.1 . . 3  |-  A  e.  RR
4 lt.2 . . 3  |-  B  e.  RR
53, 4mulgt0i 7691 . 2  |-  ( ( 0  <  A  /\  0  <  B )  -> 
0  <  ( A  x.  B ) )
61, 2, 5mp2an 418 1  |-  0  <  ( A  x.  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 1445   class class class wbr 3867  (class class class)co 5690   RRcr 7446   0cc0 7447    x. cmul 7452    < clt 7619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1re 7536  ax-addrcl 7539  ax-mulrcl 7541  ax-rnegex 7551  ax-pre-mulgt0 7559
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-xp 4473  df-pnf 7621  df-mnf 7622  df-ltxr 7624
This theorem is referenced by:  ef01bndlem  11211
  Copyright terms: Public domain W3C validator