ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0ii Unicode version

Theorem mulgt0ii 8030
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
mulgt0i.3  |-  0  <  A
mulgt0i.4  |-  0  <  B
Assertion
Ref Expression
mulgt0ii  |-  0  <  ( A  x.  B
)

Proof of Theorem mulgt0ii
StepHypRef Expression
1 mulgt0i.3 . 2  |-  0  <  A
2 mulgt0i.4 . 2  |-  0  <  B
3 lt.1 . . 3  |-  A  e.  RR
4 lt.2 . . 3  |-  B  e.  RR
53, 4mulgt0i 8029 . 2  |-  ( ( 0  <  A  /\  0  <  B )  -> 
0  <  ( A  x.  B ) )
61, 2, 5mp2an 424 1  |-  0  <  ( A  x.  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   0cc0 7774    x. cmul 7779    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-mulrcl 7873  ax-rnegex 7883  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-ltxr 7959
This theorem is referenced by:  ef01bndlem  11719
  Copyright terms: Public domain W3C validator