ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0ii GIF version

Theorem mulgt0ii 8009
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
mulgt0i.3 0 < 𝐴
mulgt0i.4 0 < 𝐵
Assertion
Ref Expression
mulgt0ii 0 < (𝐴 · 𝐵)

Proof of Theorem mulgt0ii
StepHypRef Expression
1 mulgt0i.3 . 2 0 < 𝐴
2 mulgt0i.4 . 2 0 < 𝐵
3 lt.1 . . 3 𝐴 ∈ ℝ
4 lt.2 . . 3 𝐵 ∈ ℝ
53, 4mulgt0i 8008 . 2 ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
61, 2, 5mp2an 423 1 0 < (𝐴 · 𝐵)
Colors of variables: wff set class
Syntax hints:  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753   · cmul 7758   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-mulrcl 7852  ax-rnegex 7862  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-ltxr 7938
This theorem is referenced by:  ef01bndlem  11697
  Copyright terms: Public domain W3C validator