Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neiuni | GIF version |
Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
neiuni | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪ ((nei‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpnei.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | tpnei 12571 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
3 | 2 | biimpa 294 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆)) |
4 | elssuni 3800 | . . 3 ⊢ (𝑋 ∈ ((nei‘𝐽)‘𝑆) → 𝑋 ⊆ ∪ ((nei‘𝐽)‘𝑆)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ⊆ ∪ ((nei‘𝐽)‘𝑆)) |
6 | 1 | neii1 12558 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥 ⊆ 𝑋) |
7 | 6 | ex 114 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ⊆ 𝑋)) |
8 | 7 | adantr 274 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ⊆ 𝑋)) |
9 | 8 | ralrimiv 2529 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥 ⊆ 𝑋) |
10 | unissb 3802 | . . 3 ⊢ (∪ ((nei‘𝐽)‘𝑆) ⊆ 𝑋 ↔ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥 ⊆ 𝑋) | |
11 | 9, 10 | sylibr 133 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ ((nei‘𝐽)‘𝑆) ⊆ 𝑋) |
12 | 5, 11 | eqssd 3145 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪ ((nei‘𝐽)‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∀wral 2435 ⊆ wss 3102 ∪ cuni 3772 ‘cfv 5170 Topctop 12406 neicnei 12549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-top 12407 df-nei 12550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |