ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiuni GIF version

Theorem neiuni 14800
Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
neiuni ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))

Proof of Theorem neiuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . . . 5 𝑋 = 𝐽
21tpnei 14799 . . . 4 (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
32biimpa 296 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
4 elssuni 3895 . . 3 (𝑋 ∈ ((nei‘𝐽)‘𝑆) → 𝑋 ((nei‘𝐽)‘𝑆))
53, 4syl 14 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 ((nei‘𝐽)‘𝑆))
61neii1 14786 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥𝑋)
76ex 115 . . . . 5 (𝐽 ∈ Top → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥𝑋))
87adantr 276 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥𝑋))
98ralrimiv 2582 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥𝑋)
10 unissb 3897 . . 3 ( ((nei‘𝐽)‘𝑆) ⊆ 𝑋 ↔ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥𝑋)
119, 10sylibr 134 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
125, 11eqssd 3221 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  wss 3177   cuni 3867  cfv 5294  Topctop 14636  neicnei 14777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-top 14637  df-nei 14778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator