| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neiuni | GIF version | ||
| Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| neiuni | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪ ((nei‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnei.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | tpnei 14676 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
| 3 | 2 | biimpa 296 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆)) |
| 4 | elssuni 3880 | . . 3 ⊢ (𝑋 ∈ ((nei‘𝐽)‘𝑆) → 𝑋 ⊆ ∪ ((nei‘𝐽)‘𝑆)) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ⊆ ∪ ((nei‘𝐽)‘𝑆)) |
| 6 | 1 | neii1 14663 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥 ⊆ 𝑋) |
| 7 | 6 | ex 115 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ⊆ 𝑋)) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ⊆ 𝑋)) |
| 9 | 8 | ralrimiv 2579 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥 ⊆ 𝑋) |
| 10 | unissb 3882 | . . 3 ⊢ (∪ ((nei‘𝐽)‘𝑆) ⊆ 𝑋 ↔ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥 ⊆ 𝑋) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ ((nei‘𝐽)‘𝑆) ⊆ 𝑋) |
| 12 | 5, 11 | eqssd 3211 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪ ((nei‘𝐽)‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3167 ∪ cuni 3852 ‘cfv 5276 Topctop 14513 neicnei 14654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-top 14514 df-nei 14655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |