ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topssnei Unicode version

Theorem topssnei 13747
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
tpnei.1  |-  X  = 
U. J
topssnei.2  |-  Y  = 
U. K
Assertion
Ref Expression
topssnei  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( ( nei `  J ) `  S
)  C_  ( ( nei `  K ) `  S ) )

Proof of Theorem topssnei
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl2 1001 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  K  e.  Top )
2 simprl 529 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  J  C_  K )
3 simpl1 1000 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  J  e.  Top )
4 simprr 531 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  e.  ( ( nei `  J
) `  S )
)
5 tpnei.1 . . . . . . . . 9  |-  X  = 
U. J
65neii1 13732 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  x  C_  X )
73, 4, 6syl2anc 411 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  C_  X )
85ntropn 13702 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( int `  J
) `  x )  e.  J )
93, 7, 8syl2anc 411 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  J )
102, 9sseldd 3158 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  K )
115neiss2 13727 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
123, 4, 11syl2anc 411 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  S  C_  X )
135neiint 13730 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X  /\  x  C_  X )  ->  (
x  e.  ( ( nei `  J ) `
 S )  <->  S  C_  (
( int `  J
) `  x )
) )
143, 12, 7, 13syl3anc 1238 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
x  e.  ( ( nei `  J ) `
 S )  <->  S  C_  (
( int `  J
) `  x )
) )
154, 14mpbid 147 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  S  C_  ( ( int `  J
) `  x )
)
16 opnneiss 13743 . . . . 5  |-  ( ( K  e.  Top  /\  ( ( int `  J
) `  x )  e.  K  /\  S  C_  ( ( int `  J
) `  x )
)  ->  ( ( int `  J ) `  x )  e.  ( ( nei `  K
) `  S )
)
171, 10, 15, 16syl3anc 1238 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  ( ( nei `  K
) `  S )
)
185ntrss2 13706 . . . . 5  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( int `  J
) `  x )  C_  x )
193, 7, 18syl2anc 411 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  C_  x )
20 simpl3 1002 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  X  =  Y )
217, 20sseqtrd 3195 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  C_  Y )
22 topssnei.2 . . . . 5  |-  Y  = 
U. K
2322ssnei2 13742 . . . 4  |-  ( ( ( K  e.  Top  /\  ( ( int `  J
) `  x )  e.  ( ( nei `  K
) `  S )
)  /\  ( (
( int `  J
) `  x )  C_  x  /\  x  C_  Y ) )  ->  x  e.  ( ( nei `  K ) `  S ) )
241, 17, 19, 21, 23syl22anc 1239 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  e.  ( ( nei `  K
) `  S )
)
2524expr 375 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( x  e.  ( ( nei `  J
) `  S )  ->  x  e.  ( ( nei `  K ) `
 S ) ) )
2625ssrdv 3163 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( ( nei `  J ) `  S
)  C_  ( ( nei `  K ) `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    C_ wss 3131   U.cuni 3811   ` cfv 5218   Topctop 13582   intcnt 13678   neicnei 13723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-top 13583  df-ntr 13681  df-nei 13724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator