ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topssnei Unicode version

Theorem topssnei 13213
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
tpnei.1  |-  X  = 
U. J
topssnei.2  |-  Y  = 
U. K
Assertion
Ref Expression
topssnei  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( ( nei `  J ) `  S
)  C_  ( ( nei `  K ) `  S ) )

Proof of Theorem topssnei
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl2 1001 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  K  e.  Top )
2 simprl 529 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  J  C_  K )
3 simpl1 1000 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  J  e.  Top )
4 simprr 531 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  e.  ( ( nei `  J
) `  S )
)
5 tpnei.1 . . . . . . . . 9  |-  X  = 
U. J
65neii1 13198 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  x  C_  X )
73, 4, 6syl2anc 411 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  C_  X )
85ntropn 13168 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( int `  J
) `  x )  e.  J )
93, 7, 8syl2anc 411 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  J )
102, 9sseldd 3154 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  K )
115neiss2 13193 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
123, 4, 11syl2anc 411 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  S  C_  X )
135neiint 13196 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X  /\  x  C_  X )  ->  (
x  e.  ( ( nei `  J ) `
 S )  <->  S  C_  (
( int `  J
) `  x )
) )
143, 12, 7, 13syl3anc 1238 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
x  e.  ( ( nei `  J ) `
 S )  <->  S  C_  (
( int `  J
) `  x )
) )
154, 14mpbid 147 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  S  C_  ( ( int `  J
) `  x )
)
16 opnneiss 13209 . . . . 5  |-  ( ( K  e.  Top  /\  ( ( int `  J
) `  x )  e.  K  /\  S  C_  ( ( int `  J
) `  x )
)  ->  ( ( int `  J ) `  x )  e.  ( ( nei `  K
) `  S )
)
171, 10, 15, 16syl3anc 1238 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  ( ( nei `  K
) `  S )
)
185ntrss2 13172 . . . . 5  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( int `  J
) `  x )  C_  x )
193, 7, 18syl2anc 411 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  C_  x )
20 simpl3 1002 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  X  =  Y )
217, 20sseqtrd 3191 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  C_  Y )
22 topssnei.2 . . . . 5  |-  Y  = 
U. K
2322ssnei2 13208 . . . 4  |-  ( ( ( K  e.  Top  /\  ( ( int `  J
) `  x )  e.  ( ( nei `  K
) `  S )
)  /\  ( (
( int `  J
) `  x )  C_  x  /\  x  C_  Y ) )  ->  x  e.  ( ( nei `  K ) `  S ) )
241, 17, 19, 21, 23syl22anc 1239 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  e.  ( ( nei `  K
) `  S )
)
2524expr 375 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( x  e.  ( ( nei `  J
) `  S )  ->  x  e.  ( ( nei `  K ) `
 S ) ) )
2625ssrdv 3159 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( ( nei `  J ) `  S
)  C_  ( ( nei `  K ) `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146    C_ wss 3127   U.cuni 3805   ` cfv 5208   Topctop 13046   intcnt 13144   neicnei 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-top 13047  df-ntr 13147  df-nei 13190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator