ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topssnei Unicode version

Theorem topssnei 12802
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
tpnei.1  |-  X  = 
U. J
topssnei.2  |-  Y  = 
U. K
Assertion
Ref Expression
topssnei  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( ( nei `  J ) `  S
)  C_  ( ( nei `  K ) `  S ) )

Proof of Theorem topssnei
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl2 991 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  K  e.  Top )
2 simprl 521 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  J  C_  K )
3 simpl1 990 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  J  e.  Top )
4 simprr 522 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  e.  ( ( nei `  J
) `  S )
)
5 tpnei.1 . . . . . . . . 9  |-  X  = 
U. J
65neii1 12787 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  x  C_  X )
73, 4, 6syl2anc 409 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  C_  X )
85ntropn 12757 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( int `  J
) `  x )  e.  J )
93, 7, 8syl2anc 409 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  J )
102, 9sseldd 3143 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  K )
115neiss2 12782 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
123, 4, 11syl2anc 409 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  S  C_  X )
135neiint 12785 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X  /\  x  C_  X )  ->  (
x  e.  ( ( nei `  J ) `
 S )  <->  S  C_  (
( int `  J
) `  x )
) )
143, 12, 7, 13syl3anc 1228 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
x  e.  ( ( nei `  J ) `
 S )  <->  S  C_  (
( int `  J
) `  x )
) )
154, 14mpbid 146 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  S  C_  ( ( int `  J
) `  x )
)
16 opnneiss 12798 . . . . 5  |-  ( ( K  e.  Top  /\  ( ( int `  J
) `  x )  e.  K  /\  S  C_  ( ( int `  J
) `  x )
)  ->  ( ( int `  J ) `  x )  e.  ( ( nei `  K
) `  S )
)
171, 10, 15, 16syl3anc 1228 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  ( ( nei `  K
) `  S )
)
185ntrss2 12761 . . . . 5  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( int `  J
) `  x )  C_  x )
193, 7, 18syl2anc 409 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  C_  x )
20 simpl3 992 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  X  =  Y )
217, 20sseqtrd 3180 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  C_  Y )
22 topssnei.2 . . . . 5  |-  Y  = 
U. K
2322ssnei2 12797 . . . 4  |-  ( ( ( K  e.  Top  /\  ( ( int `  J
) `  x )  e.  ( ( nei `  K
) `  S )
)  /\  ( (
( int `  J
) `  x )  C_  x  /\  x  C_  Y ) )  ->  x  e.  ( ( nei `  K ) `  S ) )
241, 17, 19, 21, 23syl22anc 1229 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  e.  ( ( nei `  K
) `  S )
)
2524expr 373 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( x  e.  ( ( nei `  J
) `  S )  ->  x  e.  ( ( nei `  K ) `
 S ) ) )
2625ssrdv 3148 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( ( nei `  J ) `  S
)  C_  ( ( nei `  K ) `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    C_ wss 3116   U.cuni 3789   ` cfv 5188   Topctop 12635   intcnt 12733   neicnei 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-ntr 12736  df-nei 12779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator