ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topssnei Unicode version

Theorem topssnei 14482
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
tpnei.1  |-  X  = 
U. J
topssnei.2  |-  Y  = 
U. K
Assertion
Ref Expression
topssnei  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( ( nei `  J ) `  S
)  C_  ( ( nei `  K ) `  S ) )

Proof of Theorem topssnei
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl2 1003 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  K  e.  Top )
2 simprl 529 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  J  C_  K )
3 simpl1 1002 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  J  e.  Top )
4 simprr 531 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  e.  ( ( nei `  J
) `  S )
)
5 tpnei.1 . . . . . . . . 9  |-  X  = 
U. J
65neii1 14467 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  x  C_  X )
73, 4, 6syl2anc 411 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  C_  X )
85ntropn 14437 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( int `  J
) `  x )  e.  J )
93, 7, 8syl2anc 411 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  J )
102, 9sseldd 3185 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  K )
115neiss2 14462 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
123, 4, 11syl2anc 411 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  S  C_  X )
135neiint 14465 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X  /\  x  C_  X )  ->  (
x  e.  ( ( nei `  J ) `
 S )  <->  S  C_  (
( int `  J
) `  x )
) )
143, 12, 7, 13syl3anc 1249 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
x  e.  ( ( nei `  J ) `
 S )  <->  S  C_  (
( int `  J
) `  x )
) )
154, 14mpbid 147 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  S  C_  ( ( int `  J
) `  x )
)
16 opnneiss 14478 . . . . 5  |-  ( ( K  e.  Top  /\  ( ( int `  J
) `  x )  e.  K  /\  S  C_  ( ( int `  J
) `  x )
)  ->  ( ( int `  J ) `  x )  e.  ( ( nei `  K
) `  S )
)
171, 10, 15, 16syl3anc 1249 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  e.  ( ( nei `  K
) `  S )
)
185ntrss2 14441 . . . . 5  |-  ( ( J  e.  Top  /\  x  C_  X )  -> 
( ( int `  J
) `  x )  C_  x )
193, 7, 18syl2anc 411 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  (
( int `  J
) `  x )  C_  x )
20 simpl3 1004 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  X  =  Y )
217, 20sseqtrd 3222 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  C_  Y )
22 topssnei.2 . . . . 5  |-  Y  = 
U. K
2322ssnei2 14477 . . . 4  |-  ( ( ( K  e.  Top  /\  ( ( int `  J
) `  x )  e.  ( ( nei `  K
) `  S )
)  /\  ( (
( int `  J
) `  x )  C_  x  /\  x  C_  Y ) )  ->  x  e.  ( ( nei `  K ) `  S ) )
241, 17, 19, 21, 23syl22anc 1250 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  ( J  C_  K  /\  x  e.  (
( nei `  J
) `  S )
) )  ->  x  e.  ( ( nei `  K
) `  S )
)
2524expr 375 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( x  e.  ( ( nei `  J
) `  S )  ->  x  e.  ( ( nei `  K ) `
 S ) ) )
2625ssrdv 3190 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y )  /\  J  C_  K )  ->  ( ( nei `  J ) `  S
)  C_  ( ( nei `  K ) `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   U.cuni 3840   ` cfv 5259   Topctop 14317   intcnt 14413   neicnei 14458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-top 14318  df-ntr 14416  df-nei 14459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator