![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nftpos | GIF version |
Description: Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
nftpos.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nftpos | ⊢ Ⅎ𝑥tpos 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftpos4 6278 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑦 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑦})) | |
2 | nftpos.1 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2329 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑦}) | |
4 | 2, 3 | nfco 4804 | . 2 ⊢ Ⅎ𝑥(𝐹 ∘ (𝑦 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑦})) |
5 | 1, 4 | nfcxfr 2326 | 1 ⊢ Ⅎ𝑥tpos 𝐹 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2316 Vcvv 2749 ∪ cun 3139 ∅c0 3434 {csn 3604 ∪ cuni 3821 ↦ cmpt 4076 × cxp 4636 ◡ccnv 4637 ∘ ccom 4642 tpos ctpos 6259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 df-tpos 6260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |