| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn | Unicode version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elomssom 4697 |
. 2
| |
| 2 | ssel2 3219 |
. . 3
| |
| 3 | 2 | ancoms 268 |
. 2
|
| 4 | 1, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: ordom 4699 peano2b 4707 nntr2 6649 nndifsnid 6653 nnaordi 6654 nnmordi 6662 fidceq 7031 nnwetri 7078 enumctlemm 7281 nninfwlpoimlemg 7342 nninfwlpoimlemginf 7343 2onetap 7441 2omotaplemap 7443 nninfinf 10665 ennnfonelemdm 12991 ennnfonelemnn0 12993 xpscf 13380 nnti 16356 nninfsellemdc 16376 nninfsellemeq 16380 nninfsellemeqinf 16382 |
| Copyright terms: Public domain | W3C validator |