| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn | Unicode version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elomssom 4671 |
. 2
| |
| 2 | ssel2 3196 |
. . 3
| |
| 3 | 2 | ancoms 268 |
. 2
|
| 4 | 1, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: ordom 4673 peano2b 4681 nntr2 6612 nndifsnid 6616 nnaordi 6617 nnmordi 6625 fidceq 6992 nnwetri 7039 enumctlemm 7242 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 2onetap 7402 2omotaplemap 7404 nninfinf 10625 ennnfonelemdm 12906 ennnfonelemnn0 12908 xpscf 13294 nnti 16129 nninfsellemdc 16149 nninfsellemeq 16153 nninfsellemeqinf 16155 |
| Copyright terms: Public domain | W3C validator |