| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn | Unicode version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elomssom 4642 |
. 2
| |
| 2 | ssel2 3179 |
. . 3
| |
| 3 | 2 | ancoms 268 |
. 2
|
| 4 | 1, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: ordom 4644 peano2b 4652 nntr2 6563 nndifsnid 6567 nnaordi 6568 nnmordi 6576 fidceq 6932 nnwetri 6979 enumctlemm 7182 nninfwlpoimlemg 7243 nninfwlpoimlemginf 7244 2onetap 7325 2omotaplemap 7327 nninfinf 10538 ennnfonelemdm 12648 ennnfonelemnn0 12650 xpscf 13016 nnti 15665 nninfsellemdc 15681 nninfsellemeq 15685 nninfsellemeqinf 15687 |
| Copyright terms: Public domain | W3C validator |