Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad3antlr | Unicode version |
Description: Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 |
Ref | Expression |
---|---|
ad3antlr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 | |
2 | 1 | ad2antlr 481 | . 2 |
3 | 2 | adantr 274 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad4antlr 487 nntr2 6443 phpm 6803 phplem4on 6805 fidifsnen 6808 fisbth 6821 fin0 6823 fin0or 6824 fiintim 6866 fisseneq 6869 djudom 7027 difinfsnlem 7033 enomnilem 7064 enmkvlem 7087 enwomnilem 7095 prmuloc 7469 cauappcvgprlemopl 7549 cauappcvgprlemdisj 7554 cauappcvgprlemladdfl 7558 caucvgprlemopl 7572 axcaucvglemcau 7801 xaddf 9730 xleaddadd 9773 ssfzo12bi 10106 rebtwn2zlemstep 10134 btwnzge0 10181 addmodlteq 10279 frecuzrdgg 10297 apexp1 10574 hashxp 10682 cjap 10788 caucvgre 10863 minmax 11111 xrminmax 11144 sumeq2 11238 fsumconst 11333 ntrivcvgap 11427 prodeq2 11436 p1modz1 11672 bezoutlemmain 11862 dfgcd2 11878 lcmgcdlem 11934 cnpnei 12579 cnntr 12585 txmetcnp 12878 pw1nct 13535 peano4nninf 13539 nninfalllemn 13541 |
Copyright terms: Public domain | W3C validator |