ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad3antlr Unicode version

Theorem ad3antlr 482
Description: Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypothesis
Ref Expression
ad2ant.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
ad3antlr  |-  ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  ->  ps )

Proof of Theorem ad3antlr
StepHypRef Expression
1 ad2ant.1 . . 3  |-  ( ph  ->  ps )
21ad2antlr 478 . 2  |-  ( ( ( ch  /\  ph )  /\  th )  ->  ps )
32adantr 272 1  |-  ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  ad4antlr  484  nntr2  6350  phpm  6709  phplem4on  6711  fidifsnen  6714  fisbth  6727  fin0  6729  fin0or  6730  fiintim  6767  fisseneq  6770  djudom  6927  difinfsnlem  6933  enomnilem  6957  prmuloc  7315  cauappcvgprlemopl  7395  cauappcvgprlemdisj  7400  cauappcvgprlemladdfl  7404  caucvgprlemopl  7418  axcaucvglemcau  7626  xaddf  9513  xleaddadd  9556  ssfzo12bi  9888  rebtwn2zlemstep  9916  btwnzge0  9959  addmodlteq  10057  frecuzrdgg  10075  hashxp  10458  cjap  10564  caucvgre  10638  minmax  10886  xrminmax  10919  sumeq2  11013  fsumconst  11108  bezoutlemmain  11525  dfgcd2  11541  lcmgcdlem  11597  cnpnei  12223  cnntr  12229  txmetcnp  12500  peano4nninf  12877  nninfalllemn  12879
  Copyright terms: Public domain W3C validator