ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntr2 GIF version

Theorem nntr2 6471
Description: Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.)
Assertion
Ref Expression
nntr2 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem nntr2
StepHypRef Expression
1 nnon 4587 . . . . 5 (𝐶 ∈ ω → 𝐶 ∈ On)
21ad3antlr 485 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐶 ∈ On)
3 simpr 109 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐴𝐵)
4 simprr 522 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐵𝐶)
54adantr 274 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐵𝐶)
63, 5jca 304 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐶))
7 ontr1 4367 . . . 4 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
82, 6, 7sylc 62 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐴𝐶)
9 simpr 109 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
104adantr 274 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐵𝐶)
119, 10eqeltrd 2243 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐴𝐶)
12 simplrl 525 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐴𝐵)
13 simpr 109 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵𝐴)
1412, 13sseldd 3143 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵𝐵)
15 simplr 520 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐶 ∈ ω)
16 elnn 4583 . . . . . . 7 ((𝐵𝐶𝐶 ∈ ω) → 𝐵 ∈ ω)
174, 15, 16syl2anc 409 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐵 ∈ ω)
1817adantr 274 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵 ∈ ω)
19 nnord 4589 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
20 ordirr 4519 . . . . 5 (Ord 𝐵 → ¬ 𝐵𝐵)
2118, 19, 203syl 17 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → ¬ 𝐵𝐵)
2214, 21pm2.21dd 610 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐴𝐶)
23 simpll 519 . . . 4 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐴 ∈ ω)
24 nntri3or 6461 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2523, 17, 24syl2anc 409 . . 3 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
268, 11, 22, 25mpjao3dan 1297 . 2 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐴𝐶)
2726ex 114 1 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3o 967   = wceq 1343  wcel 2136  wss 3116  Ord word 4340  Oncon0 4341  ωcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator