ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntr2 GIF version

Theorem nntr2 6365
Description: Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.)
Assertion
Ref Expression
nntr2 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem nntr2
StepHypRef Expression
1 nnon 4491 . . . . 5 (𝐶 ∈ ω → 𝐶 ∈ On)
21ad3antlr 482 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐶 ∈ On)
3 simpr 109 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐴𝐵)
4 simprr 504 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐵𝐶)
54adantr 272 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐵𝐶)
63, 5jca 302 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐶))
7 ontr1 4279 . . . 4 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
82, 6, 7sylc 62 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐴𝐶)
9 simpr 109 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
104adantr 272 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐵𝐶)
119, 10eqeltrd 2192 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐴𝐶)
12 simplrl 507 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐴𝐵)
13 simpr 109 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵𝐴)
1412, 13sseldd 3066 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵𝐵)
15 simplr 502 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐶 ∈ ω)
16 elnn 4487 . . . . . . 7 ((𝐵𝐶𝐶 ∈ ω) → 𝐵 ∈ ω)
174, 15, 16syl2anc 406 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐵 ∈ ω)
1817adantr 272 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵 ∈ ω)
19 nnord 4493 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
20 ordirr 4425 . . . . 5 (Ord 𝐵 → ¬ 𝐵𝐵)
2118, 19, 203syl 17 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → ¬ 𝐵𝐵)
2214, 21pm2.21dd 592 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐴𝐶)
23 simpll 501 . . . 4 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐴 ∈ ω)
24 nntri3or 6355 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2523, 17, 24syl2anc 406 . . 3 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
268, 11, 22, 25mpjao3dan 1268 . 2 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐴𝐶)
2726ex 114 1 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3o 944   = wceq 1314  wcel 1463  wss 3039  Ord word 4252  Oncon0 4253  ωcom 4472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-uni 3705  df-int 3740  df-tr 3995  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator