ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntr2 GIF version

Theorem nntr2 6482
Description: Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.)
Assertion
Ref Expression
nntr2 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem nntr2
StepHypRef Expression
1 nnon 4594 . . . . 5 (𝐶 ∈ ω → 𝐶 ∈ On)
21ad3antlr 490 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐶 ∈ On)
3 simpr 109 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐴𝐵)
4 simprr 527 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐵𝐶)
54adantr 274 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐵𝐶)
63, 5jca 304 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐶))
7 ontr1 4374 . . . 4 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
82, 6, 7sylc 62 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴𝐵) → 𝐴𝐶)
9 simpr 109 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
104adantr 274 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐵𝐶)
119, 10eqeltrd 2247 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐴 = 𝐵) → 𝐴𝐶)
12 simplrl 530 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐴𝐵)
13 simpr 109 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵𝐴)
1412, 13sseldd 3148 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵𝐵)
15 simplr 525 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐶 ∈ ω)
16 elnn 4590 . . . . . . 7 ((𝐵𝐶𝐶 ∈ ω) → 𝐵 ∈ ω)
174, 15, 16syl2anc 409 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐵 ∈ ω)
1817adantr 274 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐵 ∈ ω)
19 nnord 4596 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
20 ordirr 4526 . . . . 5 (Ord 𝐵 → ¬ 𝐵𝐵)
2118, 19, 203syl 17 . . . 4 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → ¬ 𝐵𝐵)
2214, 21pm2.21dd 615 . . 3 ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝐵𝐴) → 𝐴𝐶)
23 simpll 524 . . . 4 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐴 ∈ ω)
24 nntri3or 6472 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2523, 17, 24syl2anc 409 . . 3 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
268, 11, 22, 25mpjao3dan 1302 . 2 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝐵𝐵𝐶)) → 𝐴𝐶)
2726ex 114 1 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3o 972   = wceq 1348  wcel 2141  wss 3121  Ord word 4347  Oncon0 4348  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator