ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isopn3i Unicode version

Theorem isopn3i 14607
Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
isopn3i  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( ( int `  J
) `  S )  =  S )

Proof of Theorem isopn3i
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  S  e.  J )
2 elssuni 3878 . . 3  |-  ( S  e.  J  ->  S  C_ 
U. J )
3 eqid 2205 . . . 4  |-  U. J  =  U. J
43isopn3 14597 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  J  <->  ( ( int `  J ) `  S
)  =  S ) )
52, 4sylan2 286 . 2  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( S  e.  J  <->  ( ( int `  J
) `  S )  =  S ) )
61, 5mpbid 147 1  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( ( int `  J
) `  S )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166   U.cuni 3850   ` cfv 5271   Topctop 14469   intcnt 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 14470  df-ntr 14568
This theorem is referenced by:  cnntr  14697  dvidsslem  15165  dvrecap  15185
  Copyright terms: Public domain W3C validator