| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntr0 | GIF version | ||
| Description: The interior of the empty set. (Contributed by NM, 2-Oct-2007.) |
| Ref | Expression |
|---|---|
| ntr0 | ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0opn 14563 | . 2 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 2 | 0ss 3503 | . . 3 ⊢ ∅ ⊆ ∪ 𝐽 | |
| 3 | eqid 2206 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | isopn3 14682 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ ∪ 𝐽) → (∅ ∈ 𝐽 ↔ ((int‘𝐽)‘∅) = ∅)) |
| 5 | 2, 4 | mpan2 425 | . 2 ⊢ (𝐽 ∈ Top → (∅ ∈ 𝐽 ↔ ((int‘𝐽)‘∅) = ∅)) |
| 6 | 1, 5 | mpbid 147 | 1 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘∅) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ∅c0 3464 ∪ cuni 3859 ‘cfv 5285 Topctop 14554 intcnt 14650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-top 14555 df-ntr 14653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |