ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmresex Unicode version

Theorem ofmresex 5989
Description: Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresex.a  |-  ( ph  ->  A  e.  V )
ofmresex.b  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
ofmresex  |-  ( ph  ->  (  oF R  |`  ( A  X.  B
) )  e.  _V )

Proof of Theorem ofmresex
StepHypRef Expression
1 ofmresex.a . . 3  |-  ( ph  ->  A  e.  V )
2 ofmresex.b . . 3  |-  ( ph  ->  B  e.  W )
3 xpexg 4613 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
41, 2, 3syl2anc 406 . 2  |-  ( ph  ->  ( A  X.  B
)  e.  _V )
5 ofexg 5940 . 2  |-  ( ( A  X.  B )  e.  _V  ->  (  oF R  |`  ( A  X.  B
) )  e.  _V )
64, 5syl 14 1  |-  ( ph  ->  (  oF R  |`  ( A  X.  B
) )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   _Vcvv 2657    X. cxp 4497    |` cres 4501    oFcof 5934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-oprab 5732  df-mpo 5733  df-of 5936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator